Оборудование участка железной дороги перегонными устройствами автоматики и телемеханики


Электрические схемы переездной сигнализации



страница2/3
Дата31.07.2016
Размер0.61 Mb.
1   2   3

11 . Электрические схемы переездной сигнализации
Для образования участка приближения рельсовую цепь блок-участка, на котором расположен переезд, делают разрезной с местом разреза у переезда. В месте разреза рельсовой цепи предусматривается трансляция кодов, как при правильном, так и при неправильном направлении движения. Особенностью кодовой рельсовой цепи является то, что ее релейный конец размещают на входном конце блок-участка, а питающий — на выходном. При таком размещении на переезде отсутствует путевое реле, фиксирующее освобождение переезда. Чтобы контролировать освобождение переезда, на сигнальной установке, находящейся перед переездом, с момента ее проследования поездом автоматически переключаются релейный и питающий концы рельсовой цепи. После этого осуществляется подача кода КЖ вслед удаляющемуся поезду. После освобождения рельсовой цепи участка приближения код КЖ воспринимается на переезде релейной аппаратурой и переезд открывается.

Для извещения о приближении поезда к переезду за два участка приближения применяют отдельную двухпроводную цепь, в которую включают известительное реле. Информацию о состоянии переездной установки на станцию передают устройства диспетчерского контроля.

Схема управления переездной сигнализацией для нечетного пути двух­путного перегона показана на рис. 5

В пределах блок-участка, на котором расположен переезд, образованы две рельсовые цепи: 5П с питающим концом НП на переезде и 5Па с релейным концом HP на переезде.

Если переезд расположен относительно светофора 5 на расстоянии, равном расчетной длине участка приближения, то закрытие переезда происходит за один участок приближения при вступлении поезда на рельсовую цепь 5П. Реле НИП на переезде, включенное в цепь извещения И 1-ОИ1, в этом случае выключается фронтовыми контактами реле Ж2 сигнальной установки 5. Отпуская нейтральный якорь, реле НИП выключает реле НИП1, после чего выключается реле НВ, В и переезд закрывается.

Если расстояние от переезда до светофора 5 меньше расчетной длины участка приближения, то переезд закрывается за два участка приближения при вступлении поезда на рельсовую цепь 7П. В этом случае реле НИП по цепи извещения получает питание через контакты реле ИП1 и реле Ж2 светофора 5. В цепь реле НИШ включены контакты нейтрального и поляризованного якорей реле НИП. Выключение реле НИП1 производится контактом поляризованного якоря реле НИП. Состояние цепи полной схемы соответствует установленному правильному направлению движения по нечетному пути перегона, отсутствию поезда на участке приближения и открытому состоянию переезда. Для работы кодовой автоблокировки разрезная рельсовая цепь участка 5П кодируется от светофора 3. Код соответствует сигнальному показанию светофора 3. На переезде от кодовых импульсов работает реле НИ, его работу повторяет реле-повторитель НТ, Переключая свой контакт, реле НТ приводит в возбужденное состояние путевое реле НП, которое проверяет свободное состояние участка 5Па. Через фронтовой контакт реле НП возбуждается его повторитель реле НПТ. Фронтовыми контактами реле НПТ замыкается цепь кодирования рельсовой цепи 5П. Работая в кодовом режиме и переключая свой контакт в цепи трансформатора П, реле НТ транслирует кодовые импульсы в рельсовую цепь 5П. При приеме кодов у светофора 5 работает реле И, после дешифрации кода возбуждаются сигнальные реле Ж, Ж1 и Ж2, контролирующие свободность участка 5П. Порядок закрытия переезда за один участок приближения следующий. При вступлении поезда на участок 5П прекращается прием кодов у светофора 5 и выключаются реле Ж, Ж1 и Ж2. Контактами реле Ж2 выключается реле НИП на переезде. Отпуская якорь, реле НИП выключает свой повторитель реле ПНИП и одновременно размыкает цепи питания реле НИП1 и НКТ. Реле НИП1 выключает реле НВ, которое, отпуская якорь, закрывает переезд.

При выключении реле ПНИП производятся следующие переключения цепей: включается цепь реле НИ1, которое начинает работать как повторитель реле НИ; выключается реле НП из цепи проверки импульсной работы реле НТ и подключается к цепи конденсаторного дешифратора для проверки импульсной работы реле НИ1. При правильной работе реле НИ1 реле НП и НПТ остаются в возбужденном состоянии, чем контролируется свободность участка 5Па.

Порядок закрытия переезда за два участка приближения следующий. От вступления поезда на второй участок приближения 7П у светофора 5 выключаются реле ИП и ИП1. Последнее, отпуская якорь, меняет полярность тока возбуждения реле НИП на переезде в цепи И1-ОИ1. Переключая контакт поляризованного якоря, реле НИП выключает реле НИП1 и НКТ, после чего в том же порядке, как и при извещении за один участок приближения, выключается реле НВ и происходит закрытие переезда.

Так же как в схеме управления переездной сигнализацией при двухпутной автоблокировке постоянного тока, в данной схеме с помощью реле НИП1 и НКТ выполнена защита от ложного открытия переезда при по­тере шунта под поездом, движущимся по участку приближения.

Переезд открывается после проследования поездом участка 5П в следующем порядке. На переезде размещен питающий конец рельсовой цепи 5П, а путевого реле, которое могло бы фиксировать освобождение участка приближения и своевременно открывать переезд, нет. Поэтому контроль освобождения участка приближения перед переездом осуществляется путем кодирования рельсовой цепи 5П вслед движущемуся поезду с ее релейного конца. Кодирование вслед поезду начинается с момента вступления поезда на участок приближения 5П. У светофора 5 через тыловые контакты реле И и Ж1 включается реле OИ, которое замыкает следующие цепи кодирования:






Работая в режиме кода КЖ, реле ПДТ к ДТ посылают этот код в рельсовую цепь 5П вслед уходящему поезду,

С момента выхода головы поезда на рельсовую цепь 5Па на переезде прекращается импульсная работа реле НИ, НИ1 и НТ. Выключаются реле НП к НПТ, которые отключают цепи трансляции кодов в рельсовую цепь 5П. Тыловыми контактами реле НПТ в рельсовую цепь 5П включается реле НДИ, Сразу после освобождения рельсовой цепи 5П реле НДИ начинает работать в режиме кода КЖ, поступающего от светофора 5. Через контакт реле НДИ работает реле НДИ1. Через конденсаторный дешифратор возбуждается реле НДП, фиксируя освобождение переезда. Через фронтовой контакт реле НДП замыкается цепь термоэлемента НКТ, а после его нагрева с установленной выдержкой времени — цепи последовательного срабатывания реле НКТ и НИП1. Фронтовым контактом реле НИП1 включается реле НВ, которое открывает переезд. В течение всего времени движения поезда по участку 5Па рельсовая цепь 5П кодируется кодом КЖ от светофора 5.

После полного освобождения участка 5Па от светофора 3 в рельсовую цепь этого участка подается код КЖ. От этого кода на переезде работают реле НИ и НИ1. При импульсной работе этих реле через конденсаторный дешифратор срабатывает реле НП, а вслед за ним реле НПТ Последнее, притягивая якорь, переключает релейный конец рельсовой цепи 5П на питающий. Тыловыми контактами реле НПТ отключает от рельсовой цепи реле ИДИ, а фронтовыми подключает источник питания. Одновременно фронтовым контактом реле НПТ включается цепь реле НТ, которое работает как повторитель реле НИ в режиме кода КЖ. Переключая контакт в цепи трансформатора П, реле НТ транслирует код КЖ в рельсовую цепь 5П. Некоторое время с обоих концов рельсовой цепи 5П поступают коды КЖ, вырабатываемые трансмиттерами КПТ разных типов. В интервале кода КЖ, подаваемого с релейного конца, от кода КЖ, подаваемого с питающего конца, у светофора 5 работает реле И. Через дешифратор возбуждаются реле Ж, Ж1 и Ж2. Реле Ж1, размыкая тыловой контакт, выключает реле ОИ. Последнее размыкает цепи кодирования у светофора 5 и с релейного конца рельсовой цепи 5П прекращается трансляция кодов. Из рельсовой цепи 5Па продолжается кодирование рельсовой цепи 5П с ее питающего конца. Фронтовыми контактами реле Ж2 замыкается цепь извещения, на переезде возбуждаются реле НИП и ПНИП и все цепи управления переездной сигнализацией возвращаются в исходное состояние.

В схеме предусмотрена защита от возможного кратковременного закрытия переезда при полном освобождении блок-участка 5Па. При этом на переезде возобновляется работа реле НИ и НИ1. Возбуждаются реле НП и НПТ. Затем прекращается импульсная работа реле ИДИ, НДИ1 и вы­ключается реле НДП. Чтобы не произошло закрытия переезда, реле НДП не должно отпустить якорь раньше, чем сработает реле НИП и замкнет контакты нейтрального и поляризованного якорей в цепи питания реле НИП1. Для этого нужно, чтобы время на отпускание якоря реле НДП было больше, чем интервал времени с момента прекращения импульсной работы реле НДИ1 до момента срабатывания реле НИП. Если это условие не будет выполнено, то переезд кратковременно закроется, а затем после выдержки времени термоэлемента вновь откроется. Чтобы увеличить время замедления на отпускание якоря реле НДП, в цепи конденсаторного дешифратора контакты реле ИДИ1 включены так, что конденсатор емкостью 1200 мкФ получает заряд при импульсе кода в рельсовой цепи, а в интервале разряжается на реле НДП и конденсатор емкостью 500 мкФ. В цепи конденсаторного дешифратора, к которому подключено реле НП, контакты реле НИ1 включены обратно, что обеспечивает минимальное замедление на отпускание якоря этого реле. Для переключения на неправильное направление движения настраивают цепи схемы изменения направления движения, в которые включены реле направления Н. Путем возбуждения этих реле током обратной полярности устанавливают неправильное направление движения по перегону. При переключении поляризованных якорей реле Н на каждой сигнальной установке перегона срабатывают реле ПН, которые осуществляют все необходимые переключения в цепях кодирования рельсовых цепей. На сигнальной установке 3 замыкается цепь кодирования кодом КЖ:




Постоянно работая в режиме кода КЖ, реле Т подает этот код в рельсовую цепь 5Па. На переезде от импульсов кода работают реле НИ и НИ1. По цепям конденсаторного дешифратора возбуждается реле НП и вслед за ним реле НПТ. После этого в режиме кода КЖ начинает работать реле НТ, которое передает этот код в рельсовую цепь 5П. У светофора 5 в режиме кода КЖ работает реле И. По цепям дешифратора возбуждаются реле Ж, Ж1 и Ж2. Фронтовыми контактами реле Ж2 замыкается цепь извещения И1-ОИ1, по которой на переезде возбуждается реле НИП и вслед за ним реле НИП1, НКТ и НВ — переезд открыт.

При вступлении поезда на рельсовую цепь 5Па переездная сигнализация автоматически не включается. На переезде выключаются реле НИ и НТ. Прекращается трансляция кода КЖ в рельсовую цепь 5П. У светофора 5 прекращается импульсная работа реле И, отчего выключаются реле Ж, Ж1 и Ж2. Через тыловые контакты реле И и Ж1 включается реле ОИ, которое замыкает цепь кодирования рельсовой цепи 5П с ее релейного конца. Значность кода выбирается контактами реле ИП в зависимости от числа свободных блок-участков. Если свободно не менее двух блок-участков, то у светофора 5 замыкается цепь кодирования кодом 3:




Работая в режиме кода 3, реле ДТ передает этот код в рельсовую цепь 5П. На переезде код 3 принимает реле ИДИ и включает свой повторитель реле НДТ, который транслирует этот код в рельсовую цепь 5Па. При импульсной работе реле ИДИ и его повторителя НДИ1 через конденсаторный дешифратор возбуждается реле НДП, которое замыкает свой фронтовой контакт в цепи реле НИП1. У светофора 5 после выдержки времени на замедление отпускает якорь реле Ж2 и фронтовыми контактами выключает на переезде реле НИП. Последнее отпускает нейтральный якорь и фронтовым контактом размыкает цепь питания реле НИП1, Однако это реле остается включенным через ранее замкнувшийся контакт реле ИДП и не отпускает свой якорь.

С момента вступления поезда на рельсовую цепь 5П прекращается импульсная работа реле НДИ и последовательно выключаются реле ИДИ1, НДП, НИП1,НКТ и НВ, чем создается, кроме цепи ручного, еще и цепь автоматического закрытия переезда.

После полного освобождения поездом участка 5Па на переезде от кода КЖ восстанавливается импульсная работа реле НИ и НИ1. Включаются реле НП и НПТ, после этого в режиме кода КЖ начинает работать реле НТ и транслировать этот код в рельсовую цепь 5П вслед удаляющемуся поезду. С момента .полного освобождения рельсовой цепи 5П с обоих ее концов асинхронно подаются коды КЖ, вырабатываемые трансмиттерами разных типов. В интервале кода КЖ, посылаемого с релейного конца, от кода КЖ, посылаемо­го с питающего конца, у светофора 5 работает реле И и через 2—3 с через дешифратор включаются реле Ж, Ж1 и Ж2. Тыловым контактом реле Ж1 выключается реле ОИ. Последнее, отпуская якорь, размыкает цепи кодирования рельсовой цепи 5П с ее релейного конца. Кодирование с питающего конца рельсовой цепи 5П продолжается. Фронтовыми контактами реле Ж2 замыкается цепь изве­щения, по которой возбуждается реле . НИП на переезде. Притягивая якорь, реле НИП включает, реле НИП1, после чего срабатывают реле НВ и В, которые открывают переезд.

Схема светофорной сигнализации (рис 6). Огни переездных светофоров и звонки включают включающее реле В и его повторитель реле ПВ. Мигающая сигнализация переездных светофоров создается с помощью датчика импульсов ДИМ 1-1 (работающего в постоянном режиме) и комплекта мигающих реле М, КМ, КМК и ПКМ.

При отсутствии поезда на участке приближения реле В, ПВ, ПВ1(повторитель реле ПВ)находятся под током ,переезд открыт .


Исправность сигнальных ламп переездных светофоров контролируют огневые реле АО1,АО2,БО1,БО2,АБО,ББО. Каждое огневое реле поверяет исправность лампы как в холодном состоянии так и при горении. если переезд открыт и исправны лампы переездных светофоров, то огневые реле получают питание по двум обмоткам соединенным последовательно. Работая в постоянном режиме датчик импульсов ДИ мигающий полюс на обмотку реле МБО через фронтовые контакты реле ПВ1, КМК. МБО работая в импульсном режиме ставит под ток реле КМ с помощью конденсаторного дешифратора. Притягивая свой якорь КМ через фронтовой контакт реле ПВ ставит под ток реле КМК.

С момента вступления поезда на участок приближения последовательно выключаются реле НВ (ЧВ), В, ПВ. Через тыловой контакт ПВ1 подключается мигающий полюс к обмотке реле М1, которое работая в импульсном режиме своим тыловым контактом включает свой обратный повторитель реле М2. Обесточиваясь реле ПВ, создает цепь питания реле ПКМ через свой тыловой контакт и фронтовой КМ. ПКМ притягивая якорь, переключает цепь питания реле КМК, которое пока удерживало якорь за счет замедления на отпадание. Цепь питания реле МБО переходит на другую – через контакт импульсно работающего реле М2. Через тыловые контакты реле ПВ,ПВ1, фронтовые ПКМ и импульсно работающие М1,М2 создаются цепи питания ламп переездной сигнализации (в импульсе через низкоомную обмотку огневого реле ,а в интервале через обе обмотки соединенные последовательно).

При свободном переезде на светофорах переездной сигнализации горит белый мигающий огонь, контролирующий целостность всех ламп на переезде, работу комплекта мигания, свободность переезда, наличие основного питания, и состояние аккумуляторной батареи

Работа устройств переездной сигнализации при коротком замыкании изолирующих стыков на переезде в свободном состоянии перегона.

Для защиты от этого явления применяется два реле ЧИ и ЧДИ для четного направления и НИ и НДИ для нечетного направления, которые включены по взаимоисключающей схеме. Каждое из этих реле может работать только от своего трансмиттера, что и обеспечивается включением трансмиттеров разного типа (КПТШ-515 и КПТШ-715).

Включение ГКШ на переезде

Схема включения ГКШ на переезде представлена на рис 7

В цепь питания ГКШ на переездной установке двухпутного перегона (рис. 9.7, а) включены контакты огневых реле АО и БО, контролирующих исправность светофорных ламп, реле двойного снижения напряжения ДСН, реле контроля неисправности комплекта мигающих устройств КМК, реле фик­сации занятости участка приближения ПВ, аварийных реле А и А1(контроль основного и резервного питания переменным током), реле РК контроля неисправности конденсаторного блока.

При свободном участке приближения, открытом переезде и исправном состоянии всех контролируемых объектов замкнута перемычка между выводами 53-61, В линию поступает непрерывный частотный контрольный код. На табло дежурного лампочка не горит.

При занятии участка приближения .обесточивается реле ПВ и фрон­товым контактом размыкает цепь питания генератора. Контрольный код в линию не поступает. Контрольная лампочка на табло дежурного горит непрерывным светом.

Рис 7 . схема включения ГКШ на переезде

В случае перегорания любой из ламп переездного светофора или обесточивания реле ДСН тыловыми контактами одного из реле АО, БО или ДСН1 замыкаются перемычки между выводами 53-31, 43-41 и 42-41. В линию посылается контрольный код, состоящий из импульсов и интервалов длительностью 0,3 с. Контроль перегорания ламп и обесточивания реле ДСН осуществляется независимо от состояния участка приближения.

Исправность работы комплекта мигающих реле М и КМ проверяет реле КМК. При исправной работе реле М и КМ реле КМК постоянно возбуждено. В случае нахождения поезда на участке приближения и неисправности комплекта мигания (например, реле М не работает в импульсном режиме) обесточивается реле КМ. Фронтовым контактом реле КМ выключается реле КМ К и не возбуждается до устранения повреждения. Путем включения тылового контакта реле КМК в цепь питания маятникового трансмиттера обеспечивается автоматическое возбуждение реле КМ К после устранения повреждения, когда на участке приближения нет поезда. При обесточенном состоянии реле КМК в линию подается контрольный код, содержащий импульсы длительностью 0,3 с и интервалы 1 с.

При выключении основного или резервного питания обесточиваются реле А и А1. Тыловыми контактами этих реле создается перемычка между выводами 53-31. В линию посылается контрольный код с импульсами и интервалами длительностью 1 с.

Если из-за неисправности конденсаторного блока не возбуждается реле И после проследования поезда по переезду, то реле ПК по мере удаления поезда от переезда работает как повторитель реле И в режиме кодов КЖ, Ж и 3. Генератор посылает, в линию контрольные коды, соответствующие кодам АЛС. По режиму горения контрольной лампочки на табло дежурный определяет характер повреждения.



12. Расчет мощности сигнальных и переездных установок
В связи с тем, что применены кодовые рельсовые цепи 25 Гц и переездная светофорная сигнализация, я использую следующие данные:
Таблица 12.1 – Постоянные и технологические нагрузки на линейный трансформатор от оборудования кодовой автоблокировки переменного тока 25 Гц.

Наименование нагрузок

Потребляемая мощность

Р, вт

Q, вар

S, ВА

Дешифратор автоблокировки типа ДА с учетом подогрева

Кодовый трансмиттер типа КПТШ

Светофорная лампа

Генератор диспетчерского контроля типа ГКШ

Блок питания типа БПШ

Аварийные реле типа АСШ2-220

Потери в трансформаторе типа СОБС-2А

Обогрев шкафа с учетом потерь в трансформаторе

типа СОБС-2А

Освещение шкафа и переносная лампа

Электропаяльник


31,7

22,0


15,0

2,0


22,0

7,0


6,6

53,7


90,0

90,0


14,8

-

-



-

10,0


-

6,3


6,0

-

-



35,0

22,0


15,0

2,0


24,2

7,0


9,1

54,0


90,0

90,0

Таблица 12.2 – Постоянные и технологические нагрузки на переездные установки на участках с кодовой автоблокировкой.

Наименование нагрузок

Максимальная длительная мощность

Р, вт

Q, вар

  1. Автоматическая переездная сигнализация

Лампы переездных светофоров

Аварийное реле типа АСШ2-12

Потери в трансформаторе типа СОБС-2А

Аварийное реле типа АСШ2-220

РТА в совокупности с потерями в трансформаторе типа ПОБС-2А

Сигнальный выпрямитель ВАК-13Б

Блок питания типа БПШ

Освещение двух релейных шкафов и переносная лампа

Электропаяльник


30,0

10,5


10,3

7,0


262,0

8,0


7,2

165,0


90,0

-

-

6,3



-

51,3


18,0

9,0


-

-


Таблица 12.3 – Расчетная мощность кодовых рельсовых цепей 25 Гц, потребляемая от ПЧ-50/25.

Длина рельсовой цепи, м

Мощность занятой кодовой РЦ при кодировании с

питающего конца

релейного конца

P, Вт

Q, вар

S, ВА

P, Вт

Q, вар

S, ВА

До 500

501-1000


1001-1500

1501-2000

2001-2250

2251-2500



6

14

29



59

83

116



0,5

1

2



4

6

8



6

14

29



59

83

116



5

12

26



53

75

106



0,5

1

2



4

6

9



5

12

26



53

76

106


Таблица 12.4 – Расчетная мощность нагрузки ПЧ-50/25 на линейный трансформатор 50 Гц.



Нагрузка РЦ 25 Гц

на ПЧ –50/25



Нагрузка ПЧ на линейный трансформатор 50 Гц

P, Вт

Q, вар

S, ВА

0 (холостой ход)

20

40



60

80

100



120

40

65

85



110

130


160

185


175

176


177

180


200

220


245

160

190


200

210


240

270


306

Максимальную активную и реактивную составляющие мощности нагрузок сигнальной или переездной установок определяю по формулам:





где: - активная и реактивная составляющие мощности i – го потребителя постоянных и технологических нагрузок релейных шкафов;



– число постоянных и технологических нагрузок установки;

- активная и реактивная составляющие мощности ПЧ на сигнальной (переездной) установке, потребляемой от линейного трансформатора;

- количество расчетных РЦ на установке;

- коэффициент усреднения мощности кодовой рельсовой цепи ( = 0,58)

Полную мощность нагрузок сигнальной (переездной) установки определяю по формуле:



При передаче электроэнергии от линейного трансформатора к оборудованию сигнальной (переездной) установки активные потери в кабеле определяю по формуле:



Полная мощность нагрузки линейного трансформатора составляет:



По полученному значению определяю мощность линейного трансформатора. Если полученное значение мощности больше мощности трансформатора, то определяю коэффициент перегрузки по формуле:



При расчете мощностей постоянных и технологических нагрузок в релейных шкафах руководствуюсь следующими предпосылками:



  • на одиночных сигнальных установках стоящих в створе паяльник и освещение одновременно в обоих шкафах не включаются;

  • на сигнальных и переездных установках, при включении в релейном шкафу освещения, обогрев шкафа выключается;

  • на переездных (с двумя шкафами) установках учитываю одновременное освещение обоих шкафов с включением одной переносной лампы и одного электропаяльника.

Тогда с учетом выше изложенного для сигнальных точек 1,6 получаем:

Pрцmax1,6 = 300Вт,

Qрцmax1,6 =706 вар,

Pnm1=160 Вт, Qnm1=37.1 вар, = 0,58,

Pnm6=286,3 Вт, Qnm6=31.1 вар,

Pnm1,6 = Pnm1 + Pnm6 =286,3+160=446,3 Вт,

Qnm1,6 = Qnm1+Qnm6 =37.1+31.1=68,2 вар,

Pc(1,6)=446,3+300*0.58=620,3 (Вт),

Qc(1,6)=68,2+706*0.58=477,68 (вар),

Sc(1,6)= 620,3 2+477,682 =782.911 (ВА),

Pk=620,3 *0.03=18,61 (Вт)

Sом(1,6)= (620,3+18,61 ) 2+477,682 = 797.737 (ВА),

Т.к. по расчетам Sом(1,6)= 0.797кВт, то для питания сигнальных установок 1,6 выбираю трансформатор со стандартным значением мощности 1,25 кВт.

Для сигнальных точек 3,4 получаем:

Pрцmax3,4 = 535Вт,

Qрцmax3,4 =805 вар,

Pnm3=160 Вт, Qnm3=37.1 вар, = 0,58,

Pnm4=286,3 Вт, Qnm4=31.1 вар,

Pnm3,4 = Pnm3 + Pnm4 =286,3+160=446,3 Вт,

Qnm3,4 = Qnm3+Qnm4 =37.1+31.1=68,2 вар,

Pc(3,4)=446,3+535*0.58=756,6 (Вт),

Qc(3,4)=68,2+805*0.58=535,1 (вар),

Sc(3,4)= 756,6 2+535,12 =926,7 (ВА),

Pk=756,6 *0.03=22,7 (Вт)

Sом(3,4)= (756,6+22,7 ) 2+535,12 = 945,325 (ВА),

Т.к. по расчетам Sом(3,4)=0,945кВт, то для питания сигнальных установок 3,4 выбираю трансформатор со стандартным значением мощности 1,25 кВт.

Для 2-й сигнальной установки получаем Pрцmax2 =245 Вт,

Qрцmax2 =397 вар,

Pnm2=286,3 Вт, Qnm2=37.1 вар, = 0,58,

Pc(2)=286,3+245*0.58=428,4(Вт),

Qc(2)=37.1+397*0.58=267,36(вар),

Sc(2)= 428,42+267,362 = 504,9(ВА),

Pk=428,4*0.03=12,85(Вт)

Sом(2)=515,9(ВА),

Т.к. 0.516кВт не превышает значение 0.63кВт, для питания сигнальной установки 2 выбираю трансформатор со стандартным значением мощности 0,63 кВт.

Для 5-й сигнальной установки получаем Pрцmax5 =250 Вт,

Qрцmax5 =421 вар,

Pnm5=286,3 Вт, Qnm5=37.1 вар, = 0,58,

Pc(5)=286,3+250*0.58=431,3 (Вт),

Qc(5)=37.1+421*0.58=281,28(вар),

Sc(5)= 431,32+281,282 =514,915(ВА),

Pk=431,3*0.03=12,939(Вт)

Sом(5)=525,8 (ВА),

Т.к. 0.526кВт не превышает значение 0.63кВт, для питания сигнальной установки 5 выбираю трансформатор со стандартным значением мощности 0,63 кВт.

Расчет питающей установки переезда

Pnmпер=590 Вт, Qnmпер=84.6 вар,

Pрцmax =150 Вт Qрцmax=255 вар,

Рпер = Pnmпер+ Pрцmax=740 Вт

Qпер = Qnmпер+ Qрцmax=339,6

Sc(пер)= 7402+339,62 = 814,2(ВА),

Pk=740*0.03=22,2(Вт),

Sом(ПЕР)=834,43(ВА),

Т.к. Sом(ПЕР)=0.834кВт, для питания переезда выбираю трансформатор со стандартным значением мощности 1,25 кВт.


Каталог: wp-content -> uploads
uploads -> Черноземова Е. Н. История английской литературы: Планы. Разработки. Материалы. Задания. 2-е изд., испр
uploads -> Русский хит а – Студио – Fashion Girl
uploads -> Репертуар группы cosa nostra русский хит
uploads -> Штрафы в системе «Платон» отложены на полгода
uploads -> "Сапсан" Авиационное и радиоэлектронное оборудование планера
uploads -> Руководство по летной эксплуатации Планера л-13 «Бланик» содержание предисловие 3 подготовка к взлету 3
uploads -> Учебный курс. Конструкция и эксплуатация планера л-13 «Бланик» Тема №1 «Общая характеристика и основные данные планера» Общая характеристика и основные данные планеров
uploads -> Возобновляемые источники энергии и технологическая платформа модернизации


Поделитесь с Вашими друзьями:
1   2   3


База данных защищена авторским правом ©uverenniy.ru 2019
обратиться к администрации

    Главная страница