Во что мы верим, но не можем доказать. Интеллектуалы XXI века о современной науке-Джон Брокман




страница6/14
Дата26.02.2016
Размер2.1 Mb.
1   2   3   4   5   6   7   8   9   ...   14
Фримен Дайсон

      ФРИМЕН ДАЙСОН — почетный профессор физики Института последипломного образования Принстонского университета. Автор нескольких научно-популярных книг, в том числе «Воображаемые миры» и «Солнце, геном и Интернет».

       Я — математик, и поэтому мой ответ на этот вопрос будет точным. Благодаря Курту Гёделю мы знаем, что существуют математические утверждения, которые невозможно доказать. Но мне этого мало. Мне нужно утверждение, достаточно истинное, недоказуемое и простое, чтобы его смогли понять не только математики, но и обычные люди. Вот оно.

       Возьмем геометрическую прогрессию со знаменателем 2. Это ряд чисел: 2, 4, 8, 16, 32, 64, 128 и т.д. Назовем их «числами первого ряда». Возьмем геометрическую прогрессию со знаменателем 5: 5, 25, 125, 625 и т.д. Назовем их «числами второго ряда». Можно взять любое число, например, 131072 (оно входит в первый ряд чисел), и записать его в обратном порядке: 270 131. Мое утверждение таково: число, обратное числу из первого ряда, никогда не принадлежит к числам из второго ряда.

       Кажется, что числа первого ряда возникают в случайном порядке, безо всякой системы. Если бы число, обратное числу из первого ряда, принадлежало к числам из второго ряда, это было бы невероятное совпадение, и вероятность этого тем меньше, чем больше числа. Если предположить, что эти числа появляются случайно, то вероятность совпадения для любого числа из первого ряда, которое больше миллиарда, меньше одной миллиардной. Легко проверить, что этого не происходит для чисел из первого ряда, которые меньше миллиарда. Поэтому вероятность, что это когда-нибудь произойдет, меньше одной миллиардной. Вот почему я верю, что это утверждение истинно.

       Но предположение о том, что числа из первого ряда появляются случайно, также подразумевает, что это утверждение недоказуемо. Любые доказательства этого утверждения должны быть основаны на каком-то неслучайном, закономерном свойстве этих чисел. Предположение о случайности означает, что это утверждение истинно, просто потому что шансы говорят в его пользу. Но это невозможно доказать, так как нет обоснованных математических причин, по которым это может быть истинным. (Замечание для экспертов: это доказательство неприменимо к геометрической прогрессии со знаменателем 3. В этом случае утверждение легко доказать, потому что число, обратное числу, делящемуся на 3, тоже делится на 3. Делимость на 3 — закономерное свойство чисел.)

       Несложно найти другие примеры утверждений, которые, скорее всего, истинны, но недоказуемы. Главное — найти бесконечную последовательность событий, каждое из которых может произойти случайно, но с небольшой суммарной вероятностью того, что хотя бы одно из них произойдет. Тогда утверждение о том, что ни одно из событий никогда не произойдет, скорее всего, будет истинно, но недоказуемо.

      Ребекка Гольдштейн

      РЕБЕККА ГОЛЬДШТЕЙН — писатель и профессор философии колледжа Тринити в Хартфорде, Конн. Автор книги «Неполнота: доказательство и парадокс Курта Гёделя» и шести научнофантастических романов, в том числе «Вопрос об отношении души и тела» и «Свойства света: роман о любви, предательстве и квантовой физике».

       Я верю, что научные теории помогают выйти — каким-то непостижимым образом — за рамки наблюдаемого физического мира и проникнуть в суть природы. Теоретические аспекты научных теорий — выраженные в терминах, не связанных с непосредственным наблюдением — на самом деле, как мне кажется, невозможно превратить в наблюдения. Но научные теории не являются алгоритмическими «черными ящиками», куда мы складываем наблюдения, а потом вытаскиваем свои прогнозы. Я верю, что теоретические аспекты теорий содержат в себе описания, и они истинны (или ложны) в том же прозаическом смысле, в котором истинны (или ложны) наблюдения, на которых они основаны. Они истинны в том случае (и лишь в том случае), если соответствуют реальности.

       Проникнуть в суть природы, которую невозможно наблюдать, можно посредством абстрактных математических вычислений. Во многом это и делает науку таинственной — достаточно таинственной, чтобы ее методы логично и последовательно (даже если при этом неубедительно, как минимум, для меня) опровергали радикальные антиреалисты. Трудно объяснить, как науке удается делать то, что она делает — и особенно трудно объяснить, как квантовая механика описывает ненаблюдаемую реальность. Ненаблюдаемые аспекты природы, о которых мы можем знать, должны также поддаваться математическому выражению и быть адекватно связаны с наблюдениями. Титаны XVII века, например, Галилей и Ньютон, выяснили, как сочетать математику с эмпирикой. Они не знали, сработает это или нет, позволит ли открыть новые тайны природы, как это делала аристотелевская телеологическая методология, которую должна была заменить новая парадигма. Чтобы оправдать свою методологию, они сделали множество предположений о математической природе мира и его фундаментальном соответствии нашим когнитивным способностям (они считали, что это соответствие — свидетельство милосердия Господа по отношению к нам).

       Также я верю, что не все свойства природы поддаются математическому выражению (это совершенно естественно; подобным образом можно выразить только некоторые, особые свойства). Некоторые стороны природы мы никогда не постигнем с помощью науки. Поэтому наши научные теории — как и формальные математические системы (как подтвердил Гёдель) — всегда останутся неполными. Эту неполноту демонстрирует сам факт сознания — аспекта материального мира, который нам известен, но не потому, что нам его открыла наука.

      Стюарт Кауфман

      СТЮАРТ КАУФМАН — приглашенный профессор Института Санта-Фе. Ведет исследования в сфере клеточной биологии и психологии в Университете Нью-Мексико. Автор книг «Происхождение порядка» и «Исследования».

      Существует ли где-то в космосе четвертый закон термодинамики или нечто подобное, связанное с самоорганизованными неравновесными системами, такими как биосфера?

       Мне хочется думать, что такой закон существует. Давайте посчитаем: количество возможных протеинов, из которых состоят все 200 аминокислот, составляет 20200, то есть 10260. В известной нам Вселенной элементарных частиц около 1080. Предположим, что на уровне микросекунд Вселенная занята исключительно производством протеинов для 200 аминокислот. Оказывается, что понадобилось бы огромное количество повторений истории Вселенной, чтобы создать все возможные протеины. Создавая тела с более сложной структурой, чем атомы — например, такие простые органические молекулы, как протеины (не говоря уже о биологических видах, автомобилях или опере), — Вселенная следует уникальной траектории (забудем на время о квантовой механике). На более или менее простых уровнях Вселенная совершенно не эргодическая, то есть не повторяет себя.

       Теперь давайте поговорим о «смежных возможностях» — об объектах, находящихся в двух шагах от тех, которые существуют сейчас. Для систем, создающих химические реакции, смежные возможности для набора актуальных (уже существующих) компонентов — это набор других компонентов, которые могут быть созданы в ходе единственной химической реакции с участием компонентов актуального набора. Биосфера Земли создавала свою молекулярную смежную возможность около 4 миллиардов лет.

       Возможно, до появления жизни на Земле существовало несколько сотен органически-молекулярных видов; сейчас их больше триллиона. Мы не знаем, какие законы управляют смежной возможностью в этом неэргодическом процессе. Я надеюсь, что один из этих законов состоит в том, что биосферы, существующие во Вселенной, расширяются с максимальной скоростью, при этом поддерживая разнообразие уже существующих видов. Иначе этот закон можно сформулировать так: разнообразие вещей, которые могут произойти в будущем, растет в среднем с максимальной скоростью.

      Леонард Сасскинд

      ЛЕОНАРД САССКИНД — профессор теоретической физики Стэнфордского университета. Автор книг «Введение в теорию черных дыр», «Информация и революция теории струн: голографическая вселенная» (в соавторстве с Джеймсом Линдсеем).

       (Беседа со студентом-тугодумом)

       Студент: Здравствуйте, профессор. У меня проблема. Я решил провести небольшой вероятностный эксперимент — знаете, подбрасывание монетки — и проверить то, чему вы нас учили. Но у меня ничего не вышло.

       Профессор: Что ж, я рад, что вы проявили интерес. Что же вы сделали?

       Студент: Я подбросил монетку 1000 раз. Помните, вы говорили, что вероятность того, что выпадет «орел» — одна вторая. Я подсчитал, что если подбросить монетку 1000 раз, то «орел» должен выпасть 500 раз. Но он выпал 513 раз. Почему?

       Профессор: Вы забыли о допустимой погрешности.

       Если подбросить монетку какое-то число раз, допустимая погрешность будет равняться квадратному корню от количества бросков. Для 1000 бросков допустимая погрешность около 30. Так что вы получили совершенно предсказуемый результат.

       Студент: О, теперь я понял! Каждый раз, когда я подброшу монетку 1000 раз, «орел» выпадет от 470 до 530 раз. Каждый раз! Здорово, теперь я уверен, что это факт!

       Профессор: Нет-нет! Это значит, что «орел», вероятно, выпадет от 470 до 530 раз.

       Студент: Вы хотите сказать, что «орел» может выпасть 200 раз? Или 850 раз? Или выпадать все время?

       Профессор: Вероятно, нет.

       Студент: Может быть, проблема в том, что я сделал недостаточно бросков? Может быть, мне нужно пойти домой и подбросить монетку миллион раз? Может быть, тогда результат будет лучше?

       Профессор: Вероятно, нет.

       Студент: Профессор, пожалуйста, скажите мне что-нибудь, в чем я могу быть уверен. Но вы все время твердите свое «вероятно». Вы можете мне объяснить, что такое вероятность, но без слова «вероятно»?

       Профессор: Гм-гм. Я попробую. Это значит, что я буду удивлен, если «орел» выпадет чаще, чем предполагает допустимая погрешность.

       Студент: О господи! Вы хотите сказать, что все, что вы рассказывали нам о статистической механике, квантовой механике и математической вероятности, — все это значит лишь то, что вы будете удивлены, если оно не сработает?

       Профессор: Э-э-э...

       Если я подброшу монетку миллион раз, то, совершенно точно, «орел» миллион раз не выпадет. Я не азартен, но я настолько в этом уверен, что, не задумываясь, поставил бы на это свою жизнь или свою душу. Да что там душу, я поставил бы на это свою зарплату за целый год. Я абсолютно убежден, что законы больших чисел — то есть теория вероятности — сработают и не дадут меня в обиду. На них основана вся наука. Но я не могу этого доказать, и на самом деле понятия не имею, почему они работают. Может быть, именно поэтому Эйнштейн говорил, что Бог не играет в кости. Вероятно, все-таки играет.

      Дональд Хоффман

      ДОНАЛЬД ХОФФМАН — профессор когнитивных наук, философии, информационных и компьютерных наук университета Калифорнии, Ирвин. Автор книги «Зрительный интеллект: как мы создаем то, что видим».

       Я верю, что не существует ничего, кроме сознания и его содержания. Пространство-время, материя и поля никогда не были фундаментальными свойствами Вселенной, а всегда были среди самых скромных идей нашего сознания; без него их не существует.

       Мир нашего повседневного опыта — мир столов, стульев, звезд и людей, мир форм, запахов, ощущений и звуков — это присущий исключительно нашему биологическому виду интерфейс между нами и гораздо более сложной реальностью. И главное качество этого интерфейса — сознание.

       Вряд ли содержание интерфейса каким-то образом похоже на эту реальность; чтобы интерфейс был полезным, он и не должен быть на нее похож. Интерфейс (например, интерфейс компьютера Шшсктв) должен быть удобным и простым в использовании. Мы «кликаем» на иконки, потому что это быстрее и точнее, чем просматривать мегабайты программного обеспечения или переключать напряжение в электроцепях. Требования эволюции диктуют, чтобы интерфейс, свойственный нашему виду — мир нашего повседневного опыта, — сам был радикальным упрощением. Его задача — не исчерпывающее описание истины, а обеспечение нашего выживания.

       Если сознание первично, то нас не должно удивлять, что, несмотря на многовековые усилия лучших умов человечества, до сих пор не существует физической теории сознания — теории, которая бы объясняла, как лишенные разума материя, энергия или поля могут превращаться в сознательный опыт или создавать его. Есть множество предположений о том, где искать такую теорию — возможно, в рамках теории информации, теории сложности, нейробиологии, нейронного дарвинизма, дифференциальных механизмов, квантовых эффектов или функциональных организационных структур. Но ни одно из этих предположений даже близко не соответствует минимальным критериям научной теории: точности измерений и новаторских гипотез. Если материя — один из самых скромных продуктов сознания, то нам не следует ожидать, что сознание, даже теоретически, могло возникнуть из материи.

       Проблема сознание-тело станет для онтологии физикализма тем же, чем стало излучение твердого тела для классической механики: сначала поводом для ее героической защиты, а потом причиной ее окончательного падения. Я подозреваю, что героическая защита концепции физикализма[13] закончится нескоро, ведь ее защитники сомневаются в том, что теория первичности сознания будет подтверждена математическими вычислениями или достаточными свидетельствами физических наук. Остается только гадать, до какой степени и насколько эффективно математики смогут смоделировать сознание. Но есть интересные гипотезы: последователи квантовой теории уже добились больших успехов в этом направлении. Возможно, ее подкрепляют и новые математические доказательства в сфере психологии восприятия и познания. Скоро мы это увидим.

      Возможно, вопрос об отношении сознания и тела не относится к сфере физических наук, поскольку эта проблема еще не имеет достоверной физикалистской теории. Ее сторонники могут возразить: мол, это значит лишь то, что мы не слишком умны — или что пока не произойдет соответствующих мутаций, мы недостаточно умны, — чтобы развивать физикалистскую теорию. Возможно, они правы. Но если предположить, что сознание первично, то проблема сознание-тело превращается из попытки вывести сознание из материи в попытку вывести материю из сознания. Последнее, в принципе, сделать элементарно: материя, поля и пространство-время — это содержание сознания.

      Например, правила, по которым человеческое зрение создает цвета, формы, глубину, движение, фактуру и объекты — правила, которые сейчас открывают психофизиологические и вычислительные исследования когнитивных наук, — можно воспринимать как неполное, но математически точное описание. Но в этом

      и изложено посредством ее понятий, лишено научного смысла. — Прим. пер.

      процессе мы рискуем забыть о том, что физические объекты существуют независимо от наблюдателя. Солнца и Луны не существует, если их не воспринимает сознательный разум; и то, и другое — всего лишь конструкции сознания, иконки пользовательского интерфейса, свойственного нашему виду. Некоторым это может показаться абсурдным редукционизмом, противоречащим человеческому опыту и лучшим достижениям науки. Но величайшее достижение науки — то есть квантовая теория — этому не противоречит. А наш личный опыт когда-то заставлял нас верить, что Земля плоская, а звезды висят прямо у нас над головой. Возможно, объекты, существующие независимо от сознания, когда-нибудь постигнет судьба плоской Земли.

      Эта точка зрения не умаляет методов и достижений науки, но по-новому их интегрирует и объясняет. Рассмотрим, к примеру, поиски нейронных коррелятов сознания. Если сознание первично, поиски «святого Грааля» физикализма могут и должны продолжаться, ведь это, по сути, исследование нашего пользовательского интерфейса. Но если сознание первично, то его нейронные корреляты — свойство интерфейса, создающее содержание нашего сознания, но не являющееся его причиной. Если повредить мозг, разрушить нейронные корреляты, то сознание, конечно же, исчезнет. Но ни мозг, ни нейронные корреляты не являются причиной сознания. Наоборот, это сознание создает мозг. И в этом нет ничего необычного. Перетащите иконку файла в корзину — и файл будет удален. Но ни файл, ни корзина, представляющие собой сочетания пикселей на экране, не являются причиной их удаления. Иконка — это упрощение, графический коррелят содержания файла, призванный не демонстрировать сложную сеть причинно-следственных отношений, а скрыть ее.

      Терренс Сейновски

      ТЕРРЕНС СЕЙНОВСКИ — специалист по вычислительной нейробиологии, исследователь Медицинского института Говарда Хьюза. Сотрудник Института биологических исследований Солка и Университета Калифорнии в Сан-Диего, где исследует принципы взаимосвязи между механизмами мозга и поведением. Автор книги «Вычисляющий мозг» (в соавторстве с Патрисией Черчленд).

       Как мы помним прошлое?

       На этот вопрос можно ответить по-разному, в зависимости от того, кто вы — художник, историк или ученый. Как ученый я хочу знать, какие механизмы отвечают за хранение воспоминаний, и в каких частях мозга они хранятся. Нейрофизиологи добились невероятного прогресса в исследовании нейронных механизмов научения. А я верю (но пока не могу доказать), что в поисках места, где находится долговременная память, все мы смотрим не туда, куда надо.

       Меня поражает моя способность помнить детство, хотя почти все мое тело сегодня состоит из других молекул, чем в детстве, — в частности, молекулы моего мозга непрерывно заменяются новыми. Несмотря на этот кругооборот молекул, я во всех подробностях помню места, где жил 50 лет назад — я никогда не вызывал в памяти этих воспоминаний, но их легко проверить.

       Если молекулы клеток мозга все время меняются, то почему мои воспоминания сохраняются в течение 50 лет? Мне кажется, что субстрат долгосрочной памяти находится не в клетках, а вовне, во внеклеточном пространстве. Это пространство — не пустое. Оно наполнено плотным веществом, связывающим клетки и помогающим им поддерживать форму. Подобно рубцовой ткани, это вещество с трудом рассасывается и меняется очень медленно, если вообще меняется. (Это объясняет, почему шрамы на теле сохраняются десятилетиями, хотя клетки кожи все время обновляются.)

       Моя догадка основана на серии классических экспериментов, связанных с соединениями между двигательными нейронами и мышечными клетками. При активации этих нервно-мышечных соединений мышца сокращается. Если нерв, активирующий мышцу, поврежден, нервная ткань перерастает в соединение и формирует особые нервные окончания. Это происходит даже в том случае, если мышечные клетки также повреждены. В этом случае «память» о контакте хранится во внеклеточном веществе нервно-мышечного соединения — базальной оболочке. Возможно, внеклеточное вещество синапсов мозга также обладает подобными свойствами и вполне может поддерживать целостность связей, несмотря на появление и исчезновение молекул внутри нейронов.

       Как можно доказать, что внеклеточное вещество отвечает за долгосрочную память? Моя теория предполагает, что, если внеклеточное вещество будет разрушено, воспоминания исчезнут. Такой эксперимент можно провести с помощью энзимов, избирательно разрушающих компоненты внеклеточного вещества, «выбивая» одну или больше ключевых молекул посредством молекулярных генетических техник. Если я прав, то все мои воспоминания — делающие меня уникальной личностью — хранятся в мозговом экзоскелете. Внутриклеточная механика хранит воспоминания лишь временно и решает, какие из них стоит поместить в более надежное внеклеточное хранилище. Возможно, это происходит, когда мы спим. Возможно, когда-нибудь мы сможем добраться до этого экзоскелета памяти и увидеть, на что похожи наши воспоминания.

      Джон Хорган

      ДЖОН ХОРГАН — независимый журналист и писатель, пишет о науке. Автор нескольких книг, в том числе «Конец науки»[14] и «Рациональный мистицизм: послания с границы между наукой и духовностью».

       Я верю, что нейробиологи никогда до конца не расшифруют нейронный код, тайный язык мозга, и поэтому никогда не смогут читать мысли других людей без их согласия.

       Нейронный код — это программное обеспечение, алгоритм или набор правил, с помощью которых мозг превращает «сырые» сенсорные данные в звуки, образы, воспоминания, решения, смысл. Полная расшифровка нейронного кода в принципе позволила бы ученым с совершенной точностью отслеживать деятельность разума и манипулировать им. Например, прозондировать мозг подозреваемого в террористической деятельности на предмет воспоминаний о прошлых атаках или планов будущих операций. Проблема в том, что, хотя мозг всегда действует в соответствии с определенными общими принципами, нейронный код отдельного человека уникален, сформирован его индивидуальной личной историей.

       Нейронная модель, лежащая в основе моего представления о Джордже Буше, аэропорте Хитроу или ракете «земля-воздух», отличается от вашей. Единственный способ узнать, каким образом мой мозг расшифровывает подобную информацию, — отслеживать его активность. В идеале, это можно сделать с помощью тысяч или даже миллионов имплантированных электродов, способных обнаружить вибрации отдельных нейронов — в то время как я со всей возможной точностью рассказываю вам, о чем думаю. Но данные, которые можно собрать, исследуя мой мозг, ничего не дадут для интерпретации сигналов мозга другого человека. Хорошо это или плохо, но наши мысли всегда останутся до определенной степени скрытыми от Большого Брата.

      Арнольд Трехуб

      АРНОЛЬД ТРЕХУБ — адъюнкт-профессор психологии Массачусетского университета, Амхерст; директор лаборатории, ведущей исследования в сферах психологии и нейробиологии, автор книги «Когнитивный мозг».

       Я предложил закон сознательного содержания, который гласит, что для любого опыта, мысли, вопроса или решения существует аналог в биологической и физиологической структуре мозга. Я также предположил, что вследствие этого закона традиционные попытки понять сознание с помощью поиска его нейронных коррелятов (это касается и теоретических, и эмпирических исследований) недостаточны для того, чтобы по-настоящему понять содержание сознания. Поэтому я предложил новый подход: исследовать события в мозге, сходные с нашим реальным опытом, а именно — нейронные аналоги содержания сознания. В поддержку этого подхода я представил теоретическую модель, которая не просто демонстрирует точные корреляции между состояниями сознания и нейронными событиями в мозге. Она объясняет, как возникают нейронные аналоги реального опыта, и доказывает, что важнейшие когнитивные задачи решаются с помощью определенной структуры и динамики предполагаемых нейронных механизмов и систем мозга.

       Большое количество экспериментальных, клинических данных и отчетов о наблюдениях можно объяснить в рамках моей теоретической модели. Кроме того, эта модель с точностью предсказывает множество классических иллюзий и аномалий восприятия. Поэтому я верю, что нейронные механизмы и системы, о которых я говорю, предлагают правдоподобное объяснение для многих важных аспектов человеческого познания и реального опыта. Но я не могу всего этого доказать. Конечно, конкурирующие теории, связанные с мозгом, познанием и сознанием, тоже доказать нельзя. Я думаю, лучшее, что мы можем сделать, — это искать доказательства.

      Нед Блок

      НЕД БЛОК — профессор философии и психологии Нью-Йоркского университета. Издатель альманаха The Nature of Consciousness (в соавторстве с Оуэном Фланаганом и Гэвином Гузельдере).

       Я верю, что так называемая трудная проблема сознания[15] будет решена благодаря эмпирическим и концептуальным достижениям когнитивной нейробиологии. В чем состоит «трудная проблема»? Никто не знает (в данный момент) ответа на вопрос о том, почему неврологическая основа моего переживания, к примеру красный цвет, является неврологической основой конкретного чувства, а не какого-то другого, и почему у меня вообще оно возникает. Здесь существует огромный пробел в объяснении, который сейчас мы не в состоянии заполнить, но я верю, что однажды это случится. С точки зрения концепции и объяснения «трудная проблема» предшествует вопросу о том, какова природа личности. И она существовала бы и для переживаний, не организованных в сознание. Без сомнения, решение «трудной проблемы» (т.е. заполнение пробела в объяснении) потребует идей, которые сегодня мы не можем себе представить. Проблема связи между умом и телом настолько сложна, что никакие призывы заполнить объяснительные пробелы прошлого не оправдывают моего оптимизма. Но все же я смотрю на этот вопрос с оптимизмом.

      

1   2   3   4   5   6   7   8   9   ...   14


База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница