Влияние многолучевости распространения радиоволн от навигационного космического аппарата на точность определения координат gps-приемником



страница1/7
Дата07.03.2020
Размер2.04 Mb.
  1   2   3   4   5   6   7

Влияние многолучевости распространения радиоволн от навигационного космического аппарата на точность определения координат GPS-приемником

Михайлов Сергей


http://wireless-e.ru/articles/modules/2006_2_60.php

На рубеже двух тысячелетий мировое сообщество получило самый точный инструмент для навигации и управления движущимися объектами — глобальную навигационную спутниковую систему (GNSS).

Система GNSS позволяет в планетарном масштабе выполнять навигационные функции, то есть определять текущее местоположение потребителей навигационной информации и их скорость и осуществлять точную координацию времени на поверхности Земли и в околоземном пространстве. Созданию GNSS способствовало развитие всех отраслей науки и техники.

Основой GNSS являются спутниковые радионавигационные системы GPS (США), ГЛОНАСС (Россия), космические и наземные функциональные дополнения и аппаратура потребителя.

Приемник GPS отслеживает как код спутника, так и сигналы несущей, и преобразует их в дальность и приращение дальности от навигационного спутника до приемника. Существует несколько источников погрешностей, искажающих определение кода и несущей навигационного сигнала. К основным источникам погрешностей можно отнести ионосферную задержку, погрешности бортовых часов, погрешности эфемерид, тропосферную задержку, шумы приемника и многолучевость. Большинство из вышеназванных погрешностей может быть компенсировано методами дифференциальной коррекции. Ошибка задержки сигнала в ионосфере может быть вычислена путем проведения измерений на нескольких (двух) частотах. Но шумовые погрешности приемника и погрешности многолучевости независимы для каждого приемника. Шум приемника подобен белому шуму и может быть отфильтрован, а многолучевая погрешность — главный источник ошибок для высокоточной навигации. Это особенно верно для кодовых измерений, когда погрешности достигают величин десятков метров.

Технология оценивания этих погрешностей основывается на свойствах временной корреляции погрешностей многолучевости навигационного сигнала. Используются два способа — фильтр Калмана¹В 4-го порядка и простой фильтр Калмана 2-го порядка для сигналов каждого навигационного спутника. Оцениваются дальность до навигационного спутника, приращение дальности, погрешность многолучевости и однозначность измерений. Для запуска фильтра требуются параметры кода сигнала и фазы несущей. Специальные методы используются для идентификации сигналов конкретного спутника. Экспериментальные результаты показывают, что методика может не только улучшить характеристики процесса навигации (в основном точность при статических измерениях), но и повысить качество навигационного обеспечения мобильных потребителей.

¹ Фильтр Калмана — это последовательное рекурсивное устройство оценки, использующее принятую модель генерации авторегрессивного сигнала для получения оценки, которая может быть существенно скорректирована в результате анализа каждой новой выборки во временной последовательности. Наиболее пригоден для анализа непрерывного временного ряда, например в радиолокационных станциях сопровождения. Подробнее о Калмановской фильтрации можно ознакомиться на страничке http://www.basegroup.ru/filtration/kalmanfilter.html (Прим. ред.)

На приемную антенну аппаратуры потребителя GNSS может поступать не только прямой сигнал от навигационного космического аппарата (НКА), но и множество переотраженных сигналов от земной, морской поверхностей или близлежащих объектов. Для авиационного потребителя КНС² задержка отраженного сигнала от НКА, находящегося в зените, может составлять 2/3...160 мкс, а при небольших углах возвышения НКА это значение уменьшается на порядок. Уровень отраженного сигнала может быть соизмеримым с прямым сигналом. Это приводит к существенным искажениям полезного сигнала и к погрешностям в схемах слежения за параметрами этого сигнала (задержкой, частотой и фазой). Эти погрешности во многом зависят от взаимного расположения НКА, приемной антенны аппаратуры потребителя (АП) КНС и отражающих объектов.



² Космическая Навигационная Система

Экспериментальные исследования показали большой разброс значений дальномерной погрешности из-за многолучевости, которая составляет 0,5–2 м в лучшем случае (при использовании специальных антенн) и до 100 м в худшем (в городских условиях с высотными зданиями). Использование в последней ситуации приемников сигналов стандартной точности (С/А-сигналов GPS или СТ-сигналов ГЛОНАСС) с узкополосными корреляторами может снизить погрешности на порядок. Кроме того, использование высокоточных сигналов (например, Р(Y)-сигналов GPS или ВТ-сигналов ГЛОНАСС) позволяет снизить погрешности из-за многолучевости в среднем до 1–3 м и в наихудшей ситуации до 8 м (1 σ). В наиболее неблагоприятных ситуациях может произойти срыв слежения в следящих схемах, особенно в фазовых.

Приемник GPS генерирует на заданной частоте определенный псевдослучайный кодовый сигнал (PRN), который используется для синхронизации с навигационным сигналом спутника. Локально генерированный сигнал обрабатывается путем частотного поиска (или FFT³) для коррекции влияния эффекта Доплера, AFC-цепь4 используется для обеспечения захвата частоты, и COSTAS-цепь5 используется для захвата фазы. Захват канала происходит, когда эти процессы достигают устойчивого состояния. Для сопровождения спутникового сигнала используются ошибка сопровождения и обратная связь по коду, частоте и уходу частоты, чтобы поддержать максимальную корреляцию между спутниковым сигналом и локальным сигналом. Локальный сигнал, который известен, используется для получения дальности и приращения дальности по фазе несущей.

³ FFT (Fast Fourier Transform) — Быстрое преобразование Фурье (БПФ)



4 AFC (Automatic Frequency Control) — Автоматическая Подстройка Частоты (АПЧ)

5 Costas loop — синфазно-квадратурная схема восстановления несущей

Погрешности многолучевости появляются вследствие отражения от поверхностей при прохождении навигационного сигнала от спутника к приемнику. Отраженные сигналы сдвигают корреляционный пик и искажают теоретически симметричную корреляционную характеристику приемника. Это приводит к погрешностям в измерениях фазы и псевдодальности. Погрешности многолучевости присущи как стационарным, так и мобильным потребителям [1]. Для мобильных приемников путь навигационного сигнала и отражающая геометрия изменяются, поэтому время корреляции погрешностей многолучевости для мобильных потребителей значительно меньше чем для стационарных. И в стационарных, и в мобильных реализациях неизвестные характеристики прямых и отраженных сигналов делают моделирование (и прогнозирование) погрешностей многолучевости неосуществимой задачей. Погрешность кода изза многолучевости может трансформироваться в погрешность псевдодальности от 1 до 3 метров в зависимости от типа и параметров антенны, в то время как многолучевая погрешность фазы обычно меньше нескольких сантиметров.

В настоящее время отработано и реализовано несколько методов оценивания и снижения погрешностей многолучевости. Существующие методы могут быть классифицированы по трем большим категориям в соответствии с обрабатываемыми сигналами: первая категория базируется на радиочастотных сигналах; вторая — на доступных сигналах основной полосы частот; третья — на заключительных измерениях (код, сдвиг фазы). Первая категория включаетиспользование антенн с кольцевыми компенсаторами (choke-ring) [2] и применение мультиплексных антенн для снижения многолучевости [3]. Вторая категория включает применение технологии узкого коррелятора [4, 5], коррелятора «удвоенной дельты» [6, 5], опережающих и запаздывающих уклонений [7, 5]. Третья категория может использоваться в большинстве сценариев, не требуя доступа к основной полосе частот и частоте радиосигнала GPS-приемника. Эта категория включает обработку предшествующих измерений для коррекции последующих, анализируя отношение «сигнал — шум» (SNR) измерений, оценивая погрешность многолучевости путем моделирования [1ъ, и используя мультиплексные GPS-антенны для снижения многолучевости [7].

Многолучевость ведет к искажению дальностей. Рассмотрим, влияние отраженных радиолучей. Допустим, что к приемной антенне подошел прямой радиолуч от НКА, а также отраженный от поверхности земли. Отраженный луч отличается от прямого по амплитуде и по фазе. Из-за неизбежных потерь при отражении его амплитуда уменьшается, изменяясь пропорционально коэффициенту отражения ρ. Фаза изменяется по двум причинам: во-первых, в результате сдвига фазы при отражении на угол В и, во-вторых, из-за потери фазы за счет разности хода лучей на величину ΔR. Суммарный сдвиг по фазе равен



Вектор прямого луча с амплитудой напряженности электрического поля E суммируется с вектором отраженного луча. Вектор отраженного луча амплитуды E повернут на угол β.



Результирующий вектор амплитуды кЕ повернут на угол α. Электрическое поле в месте расположения антенны является результатом интерференции обоих лучей (рис. 1). При этом амплитуда результирующего поля изменяется в k раз по сравнению с амплитудой поля прямого луча, а его фаза сдвигается на угол α:





Рис. 1. Векторная диаграмма формирования результирующего луча kE из прямого E и отраженного E

Коэффициент отражения ρ и угол сдвига фазы ? зависят от диэлектрической проницаемости и удельной электрической проводимости отражающей поверхности, длины волны, угла скольжения и поляризации радиолуча.

Определим разность хода ΔR (рис. 2). Центр антенны расположен в точке С на высоте h. Антенну устанавливают на штативе или шесте, ее высота составляет 1–2,5 м. Ввиду большой удаленности НКА падающие лучи можно считать параллельными. Тогда угол скольжения радиолуча γ и расстояние до точки отражения d соответственно равны:

где Z — зенитное расстояние спутника (когда Z < 80°, а γ > 10°). Это означает, что при данных высотах h отражения происходят на удалениях от антенны d < 5–15 м. В точках A и Bрасстояния до НКА одинаковы. Далее прямому лучу предстоит пройти отрезок BC, а отраженному — отрезок AC. Разность хода равна:







Рис. 2. Разность хода прямого и отраженного лучей; экран, если он установлен, отсекает отраженные лучи

Разность хода ΔR зависит от высоты антенны h и угла скольжения γ. Благодаря движению НКА угол скольжения меняется, что ведет к непрерывным изменениям разности хода ΔR. Вслед за изменениями ΔR меняются угол ? и погрешность Δотраж. Диапазон колебаний угла α определяется крайними положениями вектора kE в точках Q1 и Q2 (рис. 1).

Очень важно, что погрешности Δотраж во времени меняются периодически. Если наблюдения длятся дольше периода изменения погрешностей, а затем накопленные измерения обрабатывают совместно, то искажения существенно компенсируются.

На рис. 3 приведены графики, показывающие периодическое поведение погрешностей Δотраж в течение десятиминутного интервала наблюдений. Искажения подсчитаны через 1 минуту для высот антенн 1,5 и 1,95 м. Предполагалось, что поляризация волн линейная, горизонтальная, λ = 19 см, а отражения происходят от поверхности пресной воды. На графиках отчетливо видна периодичность искажений. Амплитуда колебаний Δотраж свыше 30 мм. Средние результаты искажены всего на 0 и на 3 мм. Для сухих и влажных почв амплитуда Δотражуменьшится.





Рис. 3. Графики Δотраж; λВ = 19 см

Реальная картина несколько сложнее. Радиолуч обладает не линейной, а круговой поляризацией. Поэтому волна, падающая на отражающую поверхность, имеет не только горизонтально, но и вертикально поляризованные составляющие. Отражаясь, они приобретают разные коэффициенты ρ и углы сдвига фазы ?. В отраженном луче изменяется направление вращения плоскости поляризации; в приемной антенне луч дополнительно ослабляется. Тем не менее, в фазовых измерениях картина близка к рассмотренной: искажения из-за многолучевости достигают нескольких сантиметров, период их колебаний — около 10 минут, а при продолжительных наблюдениях происходит их хорошая компенсация.

Влияние многолучевости на кодовые измерения более значительны; их оценивают погрешностями в несколько метров. В геодезических антеннах устанавливают металлические экраны, отсекающие отраженные от земной поверхности лучи (рис. 3). В некоторых приемниках встроены программы подавления многолучевости.



Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7


База данных защищена авторским правом ©uverenniy.ru 2019
обратиться к администрации

    Главная страница