Учебно-методический комплекс дисциплины «физика» для специальности «5В070800» Технология продовольственных продуктов




страница1/39
Дата28.07.2016
Размер5.45 Mb.
  1   2   3   4   5   6   7   8   9   ...   39

УМКД 042-18.38.36/03-2013

Ред.№1 от 05.09.2013

стр. из


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени ШАКАРИМА г.СЕМЕЙДокумент СМК 3 уровняУМКД

УМКД 042-18.38.36/03-2013УМКД

программа дисциплины

«Физика » для преподавателяРедакция № 1 от

«25»_06_2014г.

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

ДИСЦИПЛИНЫ

«ФИЗИКА »

для специальности «5В070800» - Технология продовольственных продуктов



УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ


СЕМЕЙ

2014

Предисловие
Предисловие

1. РАЗРАБОТАНО
Составитель: «25»_06_2014г. Нурабаева Г.У., к.ф.-м..н., доцент кафедры физики
2. ОБСУЖДЕНО

2.1 На заседании кафедры физики
Протокол от « 25 » 06 2014г., №10
Заведующий кафедрой, д.п.н., профессор: С.С.Маусымбаев
2.2 На заседании учебно-методического бюро физико-математического факультета
Протокол от « 26 » 06 2014г., №6
Председатель: К.А.Батырова
3. УТВЕРЖДЕНО

Одобрено и рекомендовано к изданию на заседании Учебно-методического совета университета

« » 2014г., Протокол №
Председатель УМС _____________________ Г.К.Искакова

4 ВВЕДЕНО ВПЕРВЫЕ

Содержание

ГлоссарийЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎK. 3

ЛекцииЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎK.. 96

Практические ЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎK. 558

Самостоятельная работа студентаЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎK.ЎKЎK793

Задания для самостоятельных работ ВолькенштейнЎKЎKЎKЎKЎKЎKЎKЎK.798

Список ЛитературыЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎKЎK..799





Г Л О С С А Р И Й

по курсу «Физика»

Абсолютно твердое тело



Абсолютно твердое тело - система материальных точек, расстояние между которыми не изменяются в данной задаче.

Вес тела

Вес тела - в физике - сила, с которой тело, находящееся в силовом (гравитационном) поле, действует на горизонтальную опору или растягивает вертикальный подвес. Значит, вес приложен к опоре, к подвесу, но не к телу.  

Вращательное движение вокруг оси

Вращательное движение вокруг оси ЁC движение, при котором траектории всех точек тела являются окружностями с центрами, расположенными на одной прямой (оси вращения), и лежащими в плоскостях, перпендикулярных этой прямой.  

Вторая космическая скорость

Вторая космическая скорость - минимальная скорость, которую необходимо сообщить телу, находящемуся на поверхности Земли (или иного массивного тела), чтобы оно вышло из сферы гравитационного действия планеты (т. е. удалилось на такое расстояние, при котором притяжение к Земле пренебрежимо мало). У поверхности Земли вторая космическая скорость равна 11.2 км/с.

Динамика

Динамика - раздел механики, изучающий влияние взаимодействий между телами на их механическое движение. Динамика отвечает на вопрос: почему движется тело? Это причинная часть механики.

Законы Ньютона - три закона, лежащие в основе классической механики.

Законы Ньютона не доказываются в математическом смысле, а являются

обобщением опыта. Впервые эти законы были сформулированы Ньютоном

в знаменитом труде «Математические начала натуральной философии»

Диэлектрическая проницаемость



Диэлектрическая проницаемость е показывает, во сколько раз напряженность электростатического  поле в диэлектрике меньше, чем в вакууме. Для характеристики поля в диэлектрике вводят вспомогательную величину ЁC электрическое смещение: D = е0еE.

Домены

Доменами называют области спонтанной (самопроизвольной) намагниченности в ферромагнетике. Размеры доменов порядка 1 мкм. См. также Ферромагнетизм.

Дуговой разряд

Дугой называется разряд в газе, происходящий при атмосферном давлении и сопровождающийся очень высокой температурой. При этом напряжение на электродах составляет 30-40 В, а ток ЁC десятки или сотни ампер. Одно из важнейших применений дуги ЁC дуговая сварка и резка металлов.

Закон Ампера

Закон Ампера устанавливает связь силы, действующей на проводник с током в магнитном поле, с силой тока и индукцией магнитного поля: dF = IBdl sinб, где I ЁC сила тока, В ЁC индукция магнитного поля, dl ЁC длина элементарного участка проводника. Направление вектора dF определяется с помощью правила левой руки.

16. Закон Ома

Закон Ома для участка цепи связывает силу тока с разностью потенциалов на концах проводника и сопротивлением проводника: I = (ц1 ЁC ц2)/R. Закон Ома для замкнутой (полной) цепи связывает электродвижущую силу источника с полным сопротивлением цепи: I = E/(Rн + R0). Здесь  Rн  и R0 ЁC соответственно сопротивление нагрузки и внутреннее сопротивление источника.

Закон полного тока

Закон, связывающий циркуляцию вектора напряженности магнитного поля с током, охватываемым контуром интегрирования. В обобщенном виде закон полного тока входит в систему уравнений Максвелла.

Источник электродвижущей силы

Источник электродвижущей силы  источник электрической энергии, характеризующийся электродвижущей силой и внутренним электрическим сопротивлением. То же, что источник тока.

Колебательный контур

Колебательным контуром называется цепь, состоящая из параллельно включенных катушки индуктивности и конденсатора. При разряде конденсатора на катушку в контуре возникают электромагнитные колебания, частота которых зависит от емкости и индуктивности контура.

Конденсатор

Конденсатор - элемент электрической цепи, предназначенный для использования его в различных электро- и радиотехнических схемах. Конденсатор состоит из двух или проводников (обкладок), разделенных слоем диэлектрика. Толщина диэлектрика обычно мала по сравнению с размерами проводников. В зависимости от формы обкладок конденсаторы бывают плоские, цилиндрические, сферические и др. По типу диэлектрика различают воздушные, бумажные, слюдяные, керамические и др. конденсаторы.

Контактная разность потенциалов

Контактной разностью потенциалов называется разность потенциалов, возникающая при контакте двух разнородных металлов. Открыл явление итальянский ученый Вольта (1797).

Напряженность электрического поля

Напряженность электрического поля ЁC силовая характеристика поля, измеряется отношением силы, действующей на положительный пробный заряд, к значению этого заряда.

Несамостоятельный разряд

Разрядом называется протекание тока в газе. Несамостоятельным разрядом в газе называется разряд, который происходит только при  наличии внешнего ионизирующего фактора. Роль такого фактора может играть рентгеновское или ультрафиолетовое  облучение, нагревание и т. д.

Правило Ленца

Правило Ленца - правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Согласно правилу Ленца индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток. Правило Ленца есть следствие закона сохранения энергии. Э.Х.Ленц (1804-1865) - русский физик.

Постоянный ток

Постоянным называется электрический ток, не меняющийся с течением времени. В случае постоянного тока при определении силы тока I = Дq/Дt можно брать любой промежуток времени Дt.

Поток вектора E

Поток ЦE  вектора напряженности электрического поля через какую-либо поверхность. В случае однородного поля и плоской поверхности ЦE  = ES cosб, где E ЁC напряженность электростатического поля, S ЁC площадь поверхности, б ЁC угол между вектором E и нормалью к поверхности. Ср. Магнитный поток.

Правила (законы) Кирхгофа

Правила Кирхгофа применяются для расчета сложных (разветвленных) цепей постоянного тока. Метод комплексных токов позволяет распространить эти правила для расчета цепей переменного тока.

Примесная проводимость полупроводника

Проводимость называется примесной, если в химически чистый полупроводник добавлена примесь. Если при этом преобладает электронная проводимость, примесь называется донорной, если дырочная ЁC акцепторной.

Проводники

Про????????? называются вещества, содержащие в достаточной концентрации свободные заряды. К проводникам относятся металлы, ионизированные газы, водные растворы электролитов и расплавы солей. В электрическом поле свободные заряды перераспределяются так, что напряженность электрического поля внутри проводника оказывается равна нулю, а потенциал проводника всюду одинаков.

Релятивистская электродинамика

Релятивистская электродинамика - раздел электродинамики, изучающий электромагнитные явления в движущихся средах, опираясь на инвариантность заряда в различных системах отсчета и инвариантность основных законов относительно преобразований Лоренца.

Самоиндукция



Самоиндукция - явление возникновения электродвижущей силы в проводнике (катушке) при изменении протекающего в ней электрического тока. Величина и знак ЭДС самоиндукции  определяются законом электромагнитной индукции.

Сверхпроводимость

Явление сверхпроводимости открыл голландский физик Камерлинг-Оннес (1911): сопротивление ртути при температуре, близкой к абсолютному нулю, скачком уменьшалось до нуля. В дальнейшем сверхпроводимость была обнаружена и у других металлов и сплавов (свинец, олово, железо и др.). Сверхпроводимость, как и электрическое сопротивление, объясняется взаимодействием коллективизированных электронов металла с кристаллической решеткой. В 1986 году обнаружена высокотемпературная сверхпроводимость, теория которой находится в стадии разработки.
ЛЕКЦИИ

Введение

Предмет физики и ее связь с другими науками

Окружающий вас мир, все существующее вокруг вас и обнаруживаемое нами посред­ством ощущений представляет собой материю.

Неотъемлемым свойством материи и формой ее существования является движение. Движение в широком смысле слова ЎЄ это всевозможные изменения материи ЎЄ от простого перемещения до сложнейших процессов мышления.

Разнообразные формы движения материи изучаются различными науками, в том числе и физикой. Предмет физики, как, впрочем, и любой науки, может быть раскрыт только по мере его детального изложения. Дать строгое определение предмета физики довольно сложно, потому что границы между физикой и рядом смежных дисциплин условны. На данной стадии развития нельзя сохранить определение физики только как науки о природе.

Академик А. Ф. Иоффе (1880ЎЄ1960; российский физик)* определил физику как науку, изучающую общие свойства и законы движения вещества и поля. В настоящее время общепризнано, что вес взаимодействия осуществляются посредством полей, например гравитационных, электромагнитных, полей ядерных сил. Поле наряду с ве­ществом является одной из форм существования материи. Неразрывная связь поля и вещества, а также различие в их свойствах будут рассмотрены по мере изучения курса.

* Все данные приведены по биографическому справочнику Ю. А. Храмова «Физики» (М.: Наука, 1983).
Физика ЎЄ наука о наиболее простых и вместе с тем наиболее общих формах движения материи и их взаимных превращениях. Изучаемые физикой формы движения материи (механическая, тепловая и др.) присутствуют во всех высших и более сложных формах движения материи (химических, биологических и др.). Поэтому они, будучи наиболее простыми, являются в то же время наиболее общими формами движения материи. Высшие и более сложные формы движения материи ЎЄ предмет изучения других наук (химии, биологии и др.).

Физика тесно связана с естественными науками. Эта теснейшая связь физики с другими отраслями естествознания, как отмечал академик С. И. Вавилов (1891ЎЄ1955; российский физик и общественный деятель), привела к тому, что физика глубочайшими корнями вросла в астрономию, геологию, химию, биологию и другие естественные науки. В результате образовался ряд новых смежных дисциплин, таких, как астрофизика, биофизика и др.

Физика тесно связана и с техникой, причем эта связь имеет двусторонний характер. Физика выросла из потребностей техники (развитие механики у древних греков, например, было вызвано запросами строительной и военной техники того времени), и техника, в свою очередь, определяет направление физических исследований (напри­мер, в свое время задача создания наиболее экономичных тепловых двигателей вызвала бурное развитие термодинамики). С другой стороны, от развития физики зависит технический уровень производства. Физика ЎЄ база для создания новых отраслей тех­ники (электронная техника, ядерная техника и др.).

Бурный темп развития физики, растущие связи ее с техникой указывают на значи­тельную роль курса физики во втузе: это фундаментальная база для теоретической подготовки инженера, без которой его успешная деятельность невозможна.

Единицы физических величин

Основным методом исследования в физике является опыт ЎЄ основанное на практике чувственно-эмпирическое познание объективной действительности, т. е. наблюдение исследуемых явлений в точно учитываемых условиях, позволяющих следить за ходом явлений и многократно воспроизводить его при повторении этих условий.

Для объяснения экспериментальных фактов выдвигаются гипотезы. Гипотеза ЎЄ это научное предположение, выдвигаемое для объяснения какого-либо явления и требующее проверки на опыте и теоретического обоснования для того, чтобы стать достоверной научной теорией.

В результате обобщения экспериментальных фактов, а также результатов деятель­ности людей устанавливаются физические законы ЎЄ устойчивые повторяющиеся объективные закономерности, существующие в природе. Наиболее важные законы устанавливают связь между физическими величинами, для чего необходимо эти вели­чины измерять. Измерение физической величины есть действие, выполняемое с помо­щью средств измерений для нахождения значения физической величины в принятых единицах. Единицы физических величин можно выбрать произвольно, но тогда возник­нут трудности при их сравнении. Поэтому целесообразно ввести систему единиц, охватывающую единицы всех физических величин.

Для построения системы единиц произвольно выбирают единицы для нескольких не зависящих друг от друга физических величии. Эти единицы называются основными. Остальные же величины и их единицы выводятся из законов, связывающих эти величины и их единицы с основными. Они называются производными.

В настоящее время обязательна к применению в научной, а также в учебной литературе Система Интернациональная (СИ), которая строится на семи основных единицах ЎЄ метр, килограмм, секунда, ампер, кельвин, моль, кандела ЎЄ и двух допол­нительных ЎЄ радиан и стерадиан.

Метр (м) ЎЄ длина пути, проходимого светом в вакууме за 1/299792458 с.

Килограмм (кг) ЎЄ масса, равная массе международного прототипа килограмма (платиноиридиевого цилиндра, хранящегося в Международном бюро мер и весов в Севре, близ Парижа).

Секунда (с) ЎЄ время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер (А) ЎЄ сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создаст между этими проводниками силу, равную 2„Є10ЁC7 Н на каждый метр длины.

Кельвин (К) ЎЄ 1/273,16 часть термодинамической температуры тройной точки воды.

Моль (моль) ЎЄ количество вещества системы, содержащей столько же структур­ных элементов, сколько атомов содержится в нуклиде 12С массой 0,012 кг.

Кандела (кд) ЎЄ сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540„Є1012 Гц, энергетическая сила света кото­рого в этом направлении составляет 1/683 Вт/ср.

Радиан (рад) ЎЄ угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан (ср) ЎЄ телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Для установления производных единиц используют физические законы, связыва­ющие их с основными единицами. Например, из формулы равномерного прямолиней­ного движения v=s/t (s ЁC пройденный путь, t ЎЄ время) производная единица скорости получается равной 1 м/с.

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

Механика ЎЄ часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение. Механическое движе­ние ЎЄ это изменение с течением времени взаимного расположения тел или их частей.

Развитие механики как науки начинается с III в. до н. э., когда древнегреческий ученый Архимед (287ЎЄ212 до н. э.) сформулировал закон равновесия рычага и законы равновесия плавающих тел. Основные законы механики установлены итальянским физиком и астрономом Г. Галилеем (1564ЎЄ1642) н окончательно сформулированы английским ученым И. Ньютоном (1643ЎЄ1727).

Механика ГалилеяЎЄНьютона называется классической механикой. В ней изучаются законы движения макроскопических тел, скорости которых малы по сравнению со скоростью света с в вакууме. Законы движения макроскопических тел со скоростями, сравнимыми со скоростью с, изучаются релятивистской механикой, основанной на специальной теории относительности, сформулированной А. Эйнштейном (1879ЎЄ1955). Для описания движения микроскопических тел (отдельные атомы и элементарные частицы) законы классической механики неприменимы ЎЄ они заменяются законами китовой механики.

В первой части нашего курса мы будем изучать механику ГалилеяЎЄНьютона, т.е. рассматривать движение макроскопических тел со скоростями, значительно меньшими скорости с. В классической механике общепринята концепция пространства и времени, разработанная И. Ньютоном и господствовавшая в естествознании на протяжении XVIIЎЄXIX вв. Механика ГалилеяЎЄНьютона рассматривает пространство и время как объективные формы существования материи, но в отрыве друг от друга и от движения материальных тел, что соответствовало уровню знаний того времени.

Механика делится на три раздела: I) кинематику; 2) динамику; 3) статику.

Кинематика изучает движение тел, не рассматривая причины, которые это движение обусловливают.

Динамика изучает законы движения тел и причины, которые вызывают или изменя­ют это движение.

Статика изучает законы равновесия системы тел. Если известны законы движения тел, то из них можно установить и законы равновесия. Поэтому законы статики отдельно от законов динамики физика не рассматривает.

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является материальная точка ЎЄ тело, обладающее массой, размерами которого в данной задаче можно пренебречь. Понятие материальной точки ЎЄ абстрактное, но его введение облегчает решение практических задач. Например, изучая движение планет по орбитам вокруг Солнца, можно принять их за материальные точки.

Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между собой части, каждая из которых рассматривается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы материальных точек. В механике сначала изучают движение одной материальной точки, а затем переходят к изучению движения системы материальных точек.

Под воздействием тел друг на друга тела могут деформироваться, т. е. изменять свою форму и размеры. Поэтому в механике вводится еще одна модель ЎЄ абсолютно твердое тело. Абсолютно твердым телом называется тело, которое ни при каких условиях не может деформироваться и при всех условиях расстояние между двумя точками (или точнее между двумя частицами) этого тела остается постоянным.

Любое движение твердого тела можно представить как комбинацию поступатель­ного и вращательного движений. Поступательное движение ЎЄ это движение, при кото­ром любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Вращательное движение ЎЄ это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Движение тел происходит в пространстве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Положение материальной точки определяется по отношению к какому-либо друго­му, произвольно выбранному телу, называемому телом отсчета. С ним связывается система отсчета ЎЄ совокупность системы координат и часов, связанных с телом от­счета. В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r, проведенным из начала системы координат в данную точку (рис. 1).

При движении материальной точки ее координаты с течением времени изменяются. В общем случае ее движение определяется скалярными уравнениями

x = x(t), у = y(t), z = z(t), (1.1)

эквивалентными векторному уравнению

r = r(t). (1.2)

Уравнения (1.1) и соответственно (1.2) называются кинематическими уравнениями дви­жения материальной точки.

Число независимых координат, полностью определяющих положение точки в про­странстве, называется числом степеней свободы. Если материальная точка свободно движется в пространстве, то, как уже было сказано, она обладает тремя степенями свободы (координаты х, у и z), если она движется по некоторой поверхности, то двумя степенями свободы, если вдоль некоторой линии, то одной степенью свободы.
  1   2   3   4   5   6   7   8   9   ...   39


База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница