Растительная клетка




Скачать 398.01 Kb.
страница3/3
Дата14.08.2016
Размер398.01 Kb.
1   2   3
        Почему одни гены так и остаются неактивными, каким образом включаются и выключаются другие — очень сложная и важная проблема, которая сейчас интенсивно исследуется. Большую роль в блокировании и деблокировании генов играют, по-видимому, белки-гистоны. Они входят в состав хромосом, находясь в соединении с ДНК. Возможно, активация, «раскрепощение» гепа происходит тогда, когда молекула гистона отсоединяется от соответствующего участка ДНК, тем самым обнажая его цепочки, позволяя им расплестись и начать функционировать химически. Присоединение гистона ведет к блокировке гена. Однако, чем управляется присоединение и отсоединение гистонов, недостаточно ясно.
        Генный материал, как говорилось, находится в хромосомах. Поэтому работа ядра по хранению наследственной информации, по ее удвоению и передаче из клетки в клетку, по организации синтеза различных белков в течение жизни клетки — это прежде всего работа хромосом. Хотя они существуют в течение всей жизни клетки, но в виде четких структур хромосомы различимы в ядре только во время деления клетки. В это время происходит конденсация материала хромосом и хромосомы удается выявить методами микроскопии как индивидуальные, четко очерченные образования.



        Хромосомы имеют различную форму. Это либо прямые или изогнутые палочки, либо разнообразные крючки, овальные тельца, шарики (рис. 36). Сильно варьируют они и по размерам. Каждая клетка растений данного вида содержит в своем ядре одинаковый набор (или наборы) хромосом из строго определенного числа разных, но строго определенных хромосом. У всех высших и некоторых низших растений в течение их жизненного цикла чередуются два поколения: с клетками, содержащими в ядрах однократный (гаплоидный, п) набор хромосом, и с клетками, ядра которых имеют двойной (диплоидный, 2п) набор хромосом. Гаплоидный набор состоит из п разных хромосом, по одной каждого типа. Численная величина строго постоянна для всех гаплоидных клеток всех растений данного вида. Так, для лесной земляники это число составляет 7, для гороха — тоже 7, но для фасоли — 11, для яблони — 17, для земляной груши — 51, для сахарного тростника — 60. Диплоидный набор — это два гаплоидных, сложенных вместе. В нем по две хромосомы каждого типа. Если у гороха в гаплоидном наборе 7 разных хромосом, то в диплоидном 7 разных пар хромосом, причем две хромосомы в пределах каждой пары одинаковы. Легко сосчитать, что для перечисленных растений диплоидный набор (2п) составляет для земляники 14, для гороха — 14, для фасоли — 22, для яблони — 34, для земляной груши — 102, а для сахарного тростника — 120 хромосом.
        В жизненном цикле мхов, папоротников чередуются организмы с диплоидными и гаплоидными клетками. Эти организмы у папоротников ведут самостоятельную, изолированную друг от друга жизнь. У мхов диплоидное растение живет на гаплоидном. В диплоидном организме образуются гаплоидные клетки—споры. Каждая из них, прорастая, дает гаплоидный организм, т. е. организм, построенный из гаплоидных клеток. В нем образуются гаплоидные же половые клетки — гаметы.
        В момент оплодотворения мужская и женская гаметы сливаются, образуя одну клетку — зиготу, имеющую одно ядро — результат слияния ядер обеих гамет. От каждой из гамет ядро зиготы получает по гаплоидному набору хромосом, и в результате оно имеет двойной, диплоидный набор их. Из зиготы развивается организм, каждая клетка которого имеет диплоидный набор хромосом.
        В диплоидном наборе две хромосомы каждой пары одинаковы по форме, внутреннему строению, содержат гены, управляющие появлением однородных признаков (рис. 36). Они называются гомологичными хромосомами. Одна из них происходит из гаплоидного набора отцовской гаметы, другая — материнской. Поэтому у раздельнополых организмов одна из них несет гены, определяющие развитие подведомственных ей признаков по отцовскому типу, вторая — по материнскому.



        Гомологичные хромосомы другой пары таким же образом определяют развитие другого ряда признаков, третьей пары—третьего ряда и т. д. Хотя отцовский и материнский организмы относятся к одному виду, но наследственные свойства их не тождественны — у них имеются и индивидуальные отличия. Поэтому некоторые гены одной гомологичной хромосомы не тождественны соответствующим генам второй.
        Гаплоидный набор, входящий в состав диплоидного и происходящий из отцовской гаметы, несет отцовскую наследственность с ее индивидуальными чертами, а гаплоидный набор из материнской гаметы — материнскую. Сложное взаимодействие однородных, но не всегда тождественных генов двух гаплоидных наборов, в сумме образующих один диплоидный, определяет, какие признаки проявятся у диплоидпого потомства, которое, по существу, является гибридом отца и матери.
        У голосеменных и покрытосеменных растений чередование поколений происходит в принципе, так же как у мхов и папоротников, но их гаплоидная фаза сильно редуцирована и представлена часто лишь группой клеток. Она живет не самостоятельно, а в теле гаплоидного растения. У покрытосеменных растений женское гаплоидное поколение заключено в зародышевом мешке, находящемся в семяпочке, а мужское— внутри пыльцевого зерна.
        Размножаются клетки делением. При этом из одной клетки образуются две дочерние, каждая из которых в свое время тоже может поделиться и т. д. Каждая из дочерних клеток должна нести в своем ядре полный и одинаковый объем наследствепного вещества, точно такого же, какой содержится в ядре материнской клетки. Только при этом условии наследственные свойства могут полностью передаваться от клетки к клетке и от растения к растениям-потомкам. Специальный механизм—митотическое деление ядра (митоз)—обеспечивает равное и полное распределение наследственного вещества, вещества хромосом, между дочерними клетками (рис. 37).



        Еще до деления клетки каждая молекула ДНК в каждой хромосоме пристраивает около себя свою копию — вторую такую же молекулу. В результате весь наследственный материал клетки удваивается, а каждая хромосома состоит теперь из двух равноценных частей — хроматид. Далее «задача» клетки состоит в том, чтобы, разделив каждую хромосому на хроматиды, строго поровну распределить их между будущими дочерними клетками: в каждую из них нужно направить по одной хроматиде от каждой хромосомы. Это осуществляется следующим образом. Непосредственно перед делением клетки хромосомы сильно уплотняются и сокращаются. Затем они располагаются в одной плоскости — по экватору ядра, причем одна хроматида каждой из них обращена к одному полюсу клетки, другая — к противоположному. Ядерная оболочка исчезает, растворяется и ядрышко. Между полюсами клетки появляются нити, в своей совокупности образующие фигуру веретена. Нити собираются из соединяющихся друг с другом микротрубочек. Веретено состоит из нитей двух родов. Одни— непрерывные, идущие от одного полюса клетки к другому. Другие—тянущие, каждая из которых соединяет полюс с одной из хроматид. В хромосоме имеется участок — кинетохор, к которому и прикрепляются тянущие нити — одна от одного полюса, другая от второго. Далее происходит расхождение хроматид. Хроматиды, составлявшие до этого каждую хромосому, отделяются друг от друга и, подтягиваемые нитями, расходятся к противоположным полюсам клетки. В результате у каждого полюса собирается по одному полному набору хроматид, которые теперь уже являются хромосомами. После этого нити веретена распадаются, вокруг каждого набора хромосом образуется ядерная оболочка, хромосомы сильно разбухают (деспирализуются). В каждом ядре появляется ядрышко. Ядро обретает структуру, свойственную ядрам, неделящихся клеток. В срединной плоскости клетки образуется перегородка, разделяющая клетку на две дочерние.
        Органоиды распределяются между дочерними клетками не строго поровну, но затем в клетках синтезируются их составные части, происходит сборка новых экземпляров органоидов каждого вида, и число их в каждой клетке восстанавливается до нормального. Сами клетки растут. В хромосомах происходит удвоение наследственного материала, после чего хромосомы состоят, как перед делением клетки, из двух хроматид. Клетка готова к новому делению.


,


        При смене диплоидного поколения клеток гаплоидным происходит так называемое редукционное деление ядра — мейоз. Во время мейоза (рис. 38) гомологичные хромосомы каждой пары сближаются, тесно прилегают друг к другу по своей длине, перекручиваются. Между соприкасающимися гомологичными хромосомами происходит обмен отдельными участками. В результате этого часть генов отцовских хромосом переходит в состав материнских хромосом, а соответствующие им гены материнских хромосом занимают освободившиеся места в отцовских хромосомах (явление кроссннговера— рис. 38А). Внешний вид тех и других хромосом в результате этого не меняется, но их качественный состав становится иным. Отцовская и материнская наследственности перераспределяются и смешиваются. Далее ядерная оболочка и ядрышко растворяются, образуется аппарат веретена, такой же, как при митозе. Гомологичные хромосомы разъединяются и с помощью нитей веретена расходятся к полюсам клетки. У одного полюса оказывается один гаплоидный набор хромосом (по одной гомологичной хромосоме из каждой пары), у другого — второй гаплоидный набор.
        Вслед за мейозом образовавшиеся гаплоидные ядра делятся путем митоза. При этом каждая хромосома гаплоидного набора расщепляется на две хроматиды, они расходятся и образуются дочерние гаплоидные клетки.
        Мейоз отличается от митоза двумя принципиальными моментами. Во-первых, при мейозе происходят слипание каждой пары гомологичных хромосом и обмен между ними частью наследственного материала, чего нет при митозе. Во-вторых, при мейозе к полюсам клетки расходятся гомологичные хромосомы, по одной от каждой пары, а при митозе каждая хромосома расщепляется на хроматиды и к полюсам расходятся хроматиды, по одной от каждой хромосомы. В результате мейоза из диплоидной клетки образуются гаплоидные.
        В клетках некоторых тканей при их развитии происходит незавершенный митоз: материал хромосом в ядрах удваивается, хромосомы делятся пополам, но, вместо того чтобы образовать два ядра, остаются в исходном ядре. С этого момента оно заключает в себе не диплоидный, а тетраплоидпьтй (четверной) набор хромосом. Процесс, ведущий к подобному удвоепию хромосом внутри одного ядра, называется эндомитозом — внутренним митозом. Если он происходит с одним ядром дважды, то оно становится октоплоидпым (восьмикратным) набором и т. д. Клетки, ядра которых несут в себе больше двух наборов хромосом, называются полиплоидными, т. е. многоплоидными. Полиплоидия клеток в ряде случаев повышает их жизнеспособность, поскольку каждый ген дублируется несколькими другими такими же генами. Однокачественные гены действуют в унисон, и повреждение какого-нибудь из них по ведет к выпадению определяемого им признака, так как компенсируется работой остальных однородных генов. Во многих случаях полиплоидные клетки крупнее и богаче содержимым, чем диплоидные. Выведены сорта полиплоидных культурных растений, которые обладают повышенными хозяйственными качествами.
        Наука, изучающая клетку, называется цитологией. Клетка представляет собой основу строения всего живого и всех жизненных процессов; поэтому большинство важнейших общебиологических проблем можно решить с привлечением цитологии и методов ее исследования.
        С помощью цитологии решаются многие практически важные вопросы: борьба с болезнями растений (грибными, бактериальными), выведение новых сортов культурных растений, преодоление стерильности (бесплодия) гибридных сортов.
        Эти проблемы современная цитология исследует, применяя разнообразные методы — микроскопические, биохимические, биофизические, генетические — и тесно взаимодействуя с другими смежными биологическими науками.
1   2   3


База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница