Предмет клеточной биологии глава


Клеточная стенка (оболочка) растений



страница15/26
Дата14.08.2016
Размер4.92 Mb.
1   ...   11   12   13   14   15   16   17   18   ...   26

Клеточная стенка (оболочка) растений


Если выделить любую клетку из организма животного и поместить ее в воду, то через короткое время клетка после набухания лопнет, лизируется. Это происходит из-за того, что через плазматическую мембрану вода будет поступать в цитоплазму, в зону с более высокой концентрацией солей и органических молекул. При этом будет увеличиваться внутренний объем клетки до тех пор, пока не разорвется плазматическая мембрана. В составе организма животных этого не происходит, потому что клетки низших и высших животных существуют в окружении жидкостей внутренней среды, концентрация солей и веществ в которой близка к таковой в цитоплазме. Свободноживущие в пресной воде одноклеточные простейшие организмы не лизируются (при отсутствии клеточной стенки) из-за того, что у них постоянно работает клеточный насос, откачивающий воду из цитоплазмы, - сократительная вакуоль.

Если же мы в воду поместим клетки бактерий или растений, то они не будут лизироваться до тех пор, пока цела их клеточная стенка. Воздействием набора различных ферментов эти стенки можно растворить. В этом случае моментально происходит набухание и разрыв, лизис, клеток. Следовательно, в естественных условиях клеточная стенка предотвращает этот гибельный для клетки процесс. Более того, наличие клеточных стенок является одним из главных факторов, регулирующих поступление воды в клетку. Клетки бактерий и растений обитают чаще всего в гипотонической водной среде, они не имеют сократительных (выделительных) вакуолей, чтобы откачать воду, но зато прочная клеточная стенка предохраняет их от чрезвычайного набухания. По мере поступления воды в клетке возникает внутреннее давление, тургор, которое препятствует дальнейшему поступлению воды.

Интересно, что у многих низших растений, например у зеленых водорослей, клетки имеют хорошо сформированную клеточную оболочку, но при половом размножении, когда образуются подвижные зооспоры, последние теряют клеточную оболочку и у них появляются пульсирующие вакуоли.

Клеточная стенка растений формируется при участии плазматической мембраны и является экстраклеточным (внеклеточным) многослойным образованием, защищающим поверхность клетки, служащим как бы наружным скелетом растительной клетки (рис. 158). Клеточная стенка растений состоит из двух компонентов: аморфного пластичного гелеобразного матрикса (основы) с высоким содержанием воды и опорной фибриллярной системы. Часто для придания свойств жесткости, несмачиваемости и др. в состав оболочек входят дополнительные полимерные вещества и соли.

В химическом отношении главные компоненты оболочек растений относятся к структурным полисахаридам.

В состав матрикса оболочек растений входят гетерогенные группы полисахаридов, растворяющиеся в концентрированных щелочах, гемицеллюлозы и пектиновые вещества. Гемицеллюлозы представляют собой ветвящиеся полимерные цепи, состоящие из различных гексоз (глюкоза, манноза, галактоза и др.), пентоз (ксилоза, арабиноза) и уроновых кислот (глюкуроновая и галактуроновая кислоты). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях и образуют разнообразные комбинации. Цепи гемицеллюлозных молекул не кристаллизуются и не образуют элементарных фибрилл. Из-за наличия полярных групп уроновых кислот они сильно гидратированы.

Пектиновые вещества - гетерогенная группа, в которую входят разветвленные сильно гидратированные полимеры, несущие отрицательные заряды из-за множества остатков галактуроновой кислоты. Благодаря свойствам своих компонентов матрикс представляет собой мягкую пластическую массу, укрепленную фибриллами.

Волокнистые компоненты клеточных оболочек растений состоят обычно из целлюлозы, линейного, неветвящегося полимера глюкозы. Молекулярный вес целлюлозы варьирует от 5 х 104 до 5 х 105, что соответствует 300-3000 остаткам глюкозы. Такие линейные молекулы целлюлозы могут соединяться в пучки или волокна. В клеточной оболочке целлюлоза образует фибриллы, которые состоят из субмикроскопических микрофибрилл толщиной до 25 нм, которые в свою очередь состоят из множества параллельно лежащих цепей молекул целлюлозы.

Количественные соотношения целлюлозы к веществам матрикса (гемицеллюлозы) могут быть весьма различными у разных объектов. Свыше 60% сухого веса первичных оболочек составляет их матрикс и около 30% приходится на скелетное вещество - целлюлозу. В сырых клеточных оболочках почти вся вода связана с гемицеллюлозами, поэтому вес основного вещества в набухшем состоянии достигает 80% сырого веса всей оболочки, тогда как содержание волокнистых веществ сводится всего к 12%. В случае же другого примера, волоски хлопчатника, целлюлозный компонент составляет 90%; в древесине целлюлоза составляет 50% от компонентов клеточной стенки.

Кроме целлюлозы, гемицеллюлозы и пектинов в состав клеточных оболочек входят дополнительные компоненты, придающие им особые свойства. Так, инкрустация (включение внутрь) оболочек лигнином (полимер кониферилового спирта) приводит к одревеснению клеточных стенок, повышению их прочности (рис. 159). Лигнин замещает в таких оболочках пластические вещества матрикса и играет роль основного вещества, обладающего высокой прочностью. Часто матрикс бывает укреплен минеральными веществами (SiO2, CaCO3 и др.).

На поверхностях клеточной оболочки могут скапливаться различные адкрустирующие вещества, например кутин и суберин, приводящие к опробковению клеток. В клетках эпидермиса на поверхности клеточных оболочек откладывается воск, который образует водонепроницаемый слой, препятствующий потере клеткой воды.

Из-за своего пористого, рыхлого строения клеточная стенка растений проницаема в значительной степени для низкомолекулярных соединений, таких как вода, сахара и ионы. Но макромолекулы проникают через целлюлозные оболочки плохо: величина пор в оболочках, позволяющая свободную диффузию веществ составляет всего лишь 3-5 нм.

Опыты с мечеными соединениями показали, что при росте клеточной оболочки выделение веществ, из которых она строится, происходит по всей поверхности клетки. Аморфные вещества матрикса, гемицеллюлозы и пектины синтезируются в вакуолях аппарата Гольджи и выделяются через плазмолемму путем экзоцитоза. Фибриллы целлюлозы синтезируются специальными ферментами, встроенными в плазмолемму.

Оболочки дифференцированных, зрелых, клеток обычно многослойные, в слоях фибриллы целлюлозы ориентированы по-разному, и количество их также может значительно колебаться. Обычно описывают первичные, вторичные и третичные клеточные оболочки (рис. 158). Для того чтобы разобраться в строении и появлении этих оболочек, необходимо познакомиться с тем, как же возникают, образуются клеточные оболочки после деления клеток.

При делении клеток растений после расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом (рис. 160). Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточная пластинка или фрагмопласт. В центральной части ее располагается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи. В состав первичной клеточной стенки входит также небольшое количество белка (около 10%), богатого гидроксипролином. имеющего множество коротких олигосахаридных цепей, что определяет этот белок как гликопротеид. По периферии клеточной пластинки при наблюдении ее в поляризованном свете обнаруживается заметное двойное лучепреломление, вызванное тем, что в этом месте располагаются ориентированные фибриллы целлюлозы. Таким образом, растущая первичная клеточная стенка состоит уже из трех слоев: центральный - срединная пластинка, состоящая только из аморфного матрикса, и два периферических - первичная оболочка, содержащая гемицеллюлозу и целлюлозные фибриллы. Если срединная пластинка - это продукт активности еще исходной клетки, то первичная оболочка образуется за счет выделения гемицеллюлозы и фибрилл целлюлозы уже двумя новыми клеточными телами. И все дальнейшее увеличение толщины клеточной (вернее, межклеточной) стенки будет происходить за счет активности двух дочерних клеток, которые с противоположных сторон будут выделять вещества клеточной оболочки, утолщающейся путем подслаивания все новых и новых пластов. Так же как и с самого начала, выделение веществ матрикса происходит за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождения их содержимого за пределы цитоплазмы. Здесь же вне клетки на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка. С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями.

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерних происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идет наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

При образовании первичной клеточной оболочки в ее составе еще мало целлюлозных фибрилл, и они располагаются более или менее перпендикулярно будущей продольной оси клетки, позже в период растяжения (удлинения клетки за счет роста вакуолей в цитоплазме) ориентация этих поперечно-направленных фибрилл подвергается пассивным изменениям: фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембране клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение.

Часто под вторичной оболочкой обнаруживают третичную оболочку, которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Следует отметить, что при делении клеток растений формированию первичной оболочки не во всех случаях предшествует образование клеточной пластинки. Так, у зеленой водоросли спирогиры новые поперечные перегородки возникают путем образования на боковых стенках исходной клетки выступов, которые, постепенно разрастаясь к центру клетки, смыкаются и делят клетку надвое.

Как уже говорилось, если в водной гипотонической среде лишить клетку ее оболочки, то произойдет лизис, разрыв клетки. Оказалось, что, подбирая соответствующие концентрации солей и сахаров, можно уравнять осмотические давления снаружи и внутри клеток, лишенных своих оболочек. При этом такие протопласты приобретают шаровидную форму (сферопласты). Если в среде, где находятся протопласты, будет достаточное количество питательных веществ и солей (среди них необходим Ca2+), то клетки снова восстанавливают , регенерируют свою клеточную оболочку. Более того, они способны в присутствии гормонов - ауксинов - делиться и создавать клеточные колонии, которые могут дать начало для роста целого растения, от которого была взята клетка.

Главный волокнистый компонент клеточной стенки больших групп грибов (базибиомицеты, аскомицеты, зигомицеты) - хитин, полисахарид, где основным сахаридом является N-ацетилглюкозамин. В состав клеточной стенки грибов кроме хитина могут входить вещества матрикса, гликопротеиды и различные белки, синтезированные в цитоплазме и выделенные клеткой наружу.

Клеточные оболочки бактерий

Опорным каркасом клеточной стенки бактерий и синезеленых водорослей также служит в значительной степени однородный полимер - пептидогликан или муреин. Жесткий каркас, окружающий бактериальную клетку, представляет собой одну гигантскую мешковидную молекулу сложного полисахарида-пептида. Каркас этот называют муреиновым мешком. Основа структуры муреинового мешка - сеть параллельных полисахаридных цепей, построенных из чередующихся дисахаридов (ацетилглюкозамин, соединенный с ацетилмурамовой кислотой), связанных многочисленными пептидными поперечными связями (рис. 161). Длина цепочек гликана может быть огромной - до нескольких сот дисахаридных блоков. Основу пептидной части муреина составляют тетрапептиды, образованные различными аминокислотами.

Бактериальная стенка может составлять до 20-30% от сухого веса бактерии. Это связано с тем, что в ее состав кроме многослойного муреинового каркаса входит большое количество дополнительных компонентов, как и в матриксе стенки растений. У грамположительных бактерий (при окраске по Граму (окраска кристаллическим фиолетовым, обработка иодом, отмывка спиртом) бактерии по-разному воспринимают краситель: грамположительные остаются окрашенными после обработки спиртом; грамотрицательные обесцвечиваются). сопутствующими компонентами служат полимерные вещества, сложным образом вплетенные в муреиновую сеть. К ним относятся тейхоевые кислоты, полисахариды, полипептиды и белки. Клеточная стенка грамположительных бактерий обладает большой жесткостью, ее муреиновая сеть многослойна.

Стенки грамотрицательных бактерий содержат однослойную муреиновую сеть, составляющую 12% сухой массы стенки. Сопутствующие компоненты составляют до 80% сухой массы. Это липопротеиды, сложные липополисахариды. Они образуют сложную наружную липопротеиновую мембрану. Следовательно, периферия грамотрицательных бактерий содержит наружную мембрану, затем однослойную муреиновую сеть, ниже нее расположена плазматическая мембрана (рис. 162). Наружная мембрана обеспечивает структурную целостность клетки, служит барьером, ограничивающим свободный доступ разных веществ к плазматической мембране. На ней также могут располагаться рецепторы для бактериофагов. Она содержит белки-порины, которые участвуют в переносе многих низкомолекулярных веществ. Молекулы порина образуют тримеры, проходящие сквозь толщу мембраны. Одна из функций этих белков - формирование в мембране гидрофильных пор, через которые происходит диффузия молекул, не более 900 дальтон. Через поры проходят свободно сахара, аминокислоты, небольшие олигосахариды и пептиды. Поры образованы разными поринами, обладают разной проницаемостью.

Между внешней липопротеидной мембраной бактериальной стенки и плазматической мембраной лежит периплазматическое пространство или периплазма. Ее толщина обычно составляет около 10 нм, она содержит тонкий (1-3 нм) муреиновый слой и раствор, содержащий специфические белки двух типов - гидролитические ферменты и транспортные белки. Из-за наличия гидролаз иногда периплазму рассматривают как аналог лизосомного компартмента эукариот. Периплазматические транспортные белки связывают и переносят сахара, аминокислоты и др. от внешней мембраны к плазмолемме.

Предшественники стенок бактерий синтезируются внутри клетки, сборка стенок происходит снаружи от плазматической мембраны.

Под действием фермента лизоцима можно разорвать муреиновый каркас и растворить бактериальную стенку. В гипотонических условиях клетки при этом разрушаются, как разрушаются голые клетки животных и растений; в изотонических условиях образуются шаровидные протопласты, которые способны снова вырабатывать свою клеточную стенку.

Интересно, что протопласты бактерий нечувствительны к действию бактериофагов- вирусов, паразитирующих на бактериях. Следовательно, компоненты бактериальной стенки обладают антигенной специфичностью по отношению к этим вирусам.


Глава 14. Вакуолярная система внутриклеточного транспорта

Вакуолярная система, состоящая из одномембранных разнообразных по строению и функциям органелл (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, эндосомы, секреторные вакуоли) выполняют общую функцию синтеза, перестройки (модификации), сортировки и выведения (экспорта) из клетки биополимеров, главным образом белков-гликопротеидов, а также функцию синтеза мембран этой системы и плазматической мембраны.

Необходимо отметить, что синтез основной массы клеточных белков протекает на полисомах в цитозоле. Особенностью белкового синтеза в цитозоле является то, что в зависимости от типа иРНК синтезируются различные белки, направляющиеся строго к своим внутриклеточным компонентам. Это связано с тем, что разные по назначению белки имеют определенные “сигнальные” последовательности аминокислот, как бы адреса, по которым разные белки распределяются в клетке. Так ядерные белки имеют NLS-сигнальную последовательность, белки митохондрий имеют свою, так же как белки цитозоля, цитоскелета, пластид и пероксисом - свои сигнальные последовательности. Характерным является то, что все типы перечисленных белков начинают и заканчивают синтез в цитозоле, и затем посттрансляционно с помощью внутриклеточных белковых комплексов переносятся “по адресам”.

В отличие от этих типов белков, белки экспортного назначения и белки мембран синтезируются на рибосомах, расположенных на мембранах эндоплазматического ретикулума и попадают внутрь вакуолей, по мере синтеза полипептидной цепи, котрансляционно. Затем эти белки уже внутри вакуолей, или в составе мембран вакуолей транспортируются внутри клетки.



Общая схема функционирования вакуолярной системы

На рис. 163 представлены мембранные везикулярные компоненты, объединенные в единую функциональную систему. Все они имеют ряд общих свойств: это - одномембранные компартменты, имеющие один общий источник образования (гранулярный эндоплазматический ретикулум). Для всей вакуолярной системы характерна кооперативность ее функционирования, взаимосвязь и последовательность этапов образования, перестройки, транспорта и экспорта синтезированных белков. Вкратце функции отдельных компонентов заключаются в следующем:

1. Гранулярный эндоплазматический ретикулум: котрансляционный синтез растворимых внутривакуолярных белков (секреторные белки, гидролазы лизосом и др.); котрансляционный синтез нерастворимых белков, входящих в состав всех мембран вакуолярной системы; первичная модификация растворимых и нерастворимых (мембранных) белков, их соединение с олигосахаридами - гликозилирование синтезированных белков, образование гликопротеидов; синтез мембранных липидов и их встраивание в мембрану - “сборка мембран”.

2. Отделение вакуолей, содержащих новообразованные продукты и их переход в цис-зону аппарата Гольджи (ЭР-АГ комплекс).

3. Цис-зона аппарата Гольджи: вторичная модификация гликопротеидов; синтез полисахаридов (гемицеллюлоза растений) и гексозаминогликанов.

4. Промежуточная зона аппарата Гольджи: дополнительные модификации гликопротеидов, трансгликозилирование.

5. Транс-Гольджи сеть: сортировка секреторных и лизосомных белков; отделение вакуолей.

6. Экзоцитоз (секреция).

7. Экзоцитоз постоянный.

8. Отделение первичных лизосом с гидролазами.

9. Эндоцитоз.

10. Вторичная лизосома.

11. Рециклизация рецепторов гидролаз.

12. Рециклизация рецепторов плазматической мембраны.

13. Гладкий эндоплазматический ретикулум: синтез и конденсация липидов, депонирование ионов Ca2+, синтез и ресорбция гликогена и др.

14. Транспорт в зону аппарата Гольджи.

15. Транспорт от аппарата Гольджи в эндоплазматический ретикулум.

Гранулярный эндоплазматический ретиклум

Отличительной чертой вакуолярной системы является то, что синтезированные полимеры и продукты их превращений отделены от собственно цитоплазмы, от цитозоля, и становятся изолированными от цитозольных ферментов. Такое разобщение очень важно для одновременного протекания в клетке многих синтетических процессов.

Открытие этой внутриклеточной мембранной структуры произошло на заре электронной микроскопии. В 1945 г. К Портер с сотрудниками изучал фибробласты цыплят в электронном микроскопе. В это время еще не была разработана техника ультратонких срезов, поэтому авторы просматривали клетки на просвет, целиком. В световом микроскопе в фибрибластах после фиксации и окраски видно, что периферия клеток (эктоплазма) окрашивается слабо, в то время как центральная часть клеток (эндоплазма) хорошо воспринимает красители. Портер увидел в электронном микроскопе, что зона эндоплазмы заполнена большим числом мелких вакуолей и каналов, соединяющихся друг с другом и образующих что-то наподобие рыхлой сети (ретикулум). Было видно, что стопки этих вакуолей и канальцев ограничены тонкими мембранами. Так был обнаружен эндоплазматический ретикулум, или эндоплазматическая сеть. Позднее, в 50-х гг., при использовании метода ультратонких срезов удалось выяснить структуру этого образования и обнаружить его неоднородность. Самым же главным оказалось, что эндоплазматический ретикулум (ЭР) встречается практически у всех эукариот.

Подобный электронно-микроскопический анализ позволил выделить два типа ЭР: гранулярный (шероховатый) и гладкий.

На ультратонких срезах гранулярный ЭР представлен замкнутыми мембранами, которые образуют на сечениях вытянутые мешки, цистерны или же имеют вид узких каналов (рис. 164, 165). Ширина полостей цистерн может очень варьировать в зависимости от функциональной активности клетки. Наименьшая ширина их может составлять около 20 нм, в расширенном виде они достигают диаметра в несколько мкм. Отличительной чертой этих мембран является то, что они со стороны гиалоплазмы покрыты мелкими (около 20 нм) темными, почти округлыми частицами, гранулами.

Впервые эти гранулы были описаны Дж. Паладе (гранулы Паладе), который доказал, что они представляют собой рибонуклеопротеиды. Теперь хорошо известно, что эти гранулы являются ни чем иным, как рибосомами, связанными с мембранами ЭР. На мембранах рибосомы расположены в виде полисом (множество рибосом, объединенных одной информационной РНК), имеющих вид плоских спиралей, розеток или гроздей. Это работающие, синтезирующие белок рибосомы, которые прикрепляются к мембранам своей большой субъединицей.

Гранулярный (или шероховатый, в отличие от гладкого) ЭР может в клетках быть представлен или в виде редких разрозненных мембран или же в виде локальных скоплений таких мембран (эргастоплазма) (рис. 166). Первый тип гранулярного ЭР характерен для недифференцированных клеток или клеток с низкой метаболической активностью. Эргастоплазма характерна для клеток, активно синтезирующих секреторные белки. Так, в клетках печени гранулярный ЭР собран в отдельные зоны (тельца Берга), так же как в некоторых нервных клетках (тигроид). В клетках поджелудочной железы гранулярный ЭР (эргастоплазма) в виде плотно упакованных друг около друга мембранных цистерн занимает базальную и околоядерную зоны клетки.

Наличие полисом на мембранах однозначно показывает на то, что гранулярный ЭР является важным местом синтеза белков.

Количество рибосом на ЭР четко связано с его синтетической активностью. Так, на мембранах ЭР в клетке несекретирующей молочной железы связывается до 25% клеточных рибосом, после стимуляции лактации их количество там возрастает до 70%. Падение числа рибосом на мембранах ЭР может происходить при дифференцировке клеток. Например, при частичном удалении печени у грызунов резко стимулируется деление клеток в оставшейся части. Это сопровождается редукцией гранулярного ЭР и обеднение его рибосомами: число свободных рибосом, не связанных с мембранами, достигает 40%. Такое же уменьшение числа рибосом, связанных с ЭР, наблюдается при различных патологических состояниях клеток ( при алкагольном хроническом отравлении происходит уменьшение числа связанных рибосом на 25%).

Рибосомы, связанные с мембранами ЭР, участвуют в синтезе белков, выводимых из данной клетки, “экспортируемых” белков.

Действительно, большое число клеток многоклеточных организмов, богатых гранулярным ЭР, синтезирует и выводит огромное количество белков. Так, например, клетки ацинусов поджелудочной железы синтезируют и выделяют массу белков - ферментов, участвующих в расщеплении пищи в кишечном тракте (протеиназы, липазы, нуклеазы и др.); клетки печени - альбумины крови; плазмоциты - -глобулины; молочной железы - казеин; слюнной железы - пищеварительные ферменты, амилазу и РНКазу и т.д. Такая же картина наблюдается у растений: железистые клетки, выделяющие белковые вещества, богаты гранулярным ЭР. Другими словами, у многоклеточных организмов клетки, богатые эргастоплазмой, синтезируют выводимые из этих клеток белки, необходимые или для работы других клеток, или для выполнения общеорганизменных функций (пищеварительные ферменты, белки плазмы крови, гормоны и др.).

У одноклеточных также можно наблюдать гранулярный ЭР, который, по-видимому, участвует в синтезе выводимых экспортируемых белков. Среди таких белков могут быть не только ферменты внеклеточного пищеварения.

Следовательно, роль гранулярного ЭР заключается не просто в участии в синтезе белков на рибосомах его мембран, но и в процессе сегрегации, обособления этих синтезированных белков, в их изоляции от основных функционирующих белков клетки. Эта функциональная особенность гранулярного ЭР очень важна, так как она связана с целым рядом процессов, приводящих к выделению таких белков с помощью вакуолей аппарата Гольджи.




Поделитесь с Вашими друзьями:
1   ...   11   12   13   14   15   16   17   18   ...   26


База данных защищена авторским правом ©uverenniy.ru 2019
обратиться к администрации

    Главная страница