Основные понятия математической логики




страница2/9
Дата26.02.2016
Размер0.54 Mb.
1   2   3   4   5   6   7   8   9

Ещё пример задания:


На числовой прямой даны два отрезка: P = [10,20] и Q = [25, 55]. Определите наибольшую возможную длину отрезка A, при котором формула

( xA) → ((xP) (x Q) )



тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

1) 10 2) 20 3) 30 4) 45



Решение:

  1. для того, чтобы упростить понимание выражения, обозначим отдельные высказывания буквами

A: x А, P: x P, Q: x Q

  1. перейдем к более простым обозначениям

A(P + Q)

  1. раскроем импликацию через операции НЕ и ИЛИ ():



  1. для того, чтобы выражение было истинно при всех x, нужно, чтобы было истинно там, где ложно (жёлтая область на рисунке)



  1. поскольку области истинности и разделены, максимальный отрезок, где A может быть истинно (и, соответственно, ложно) – это наибольший из отрезков и , то есть отрезок [25,55], имеющий длину 30

  2. Ответ: 3.

Ещё пример задания:


На числовой прямой даны два отрезка: P = [14,34] и Q = [24, 44]. Выберите такой отрезок A, что формула

( xA) → ((xP)  (x Q) )



тождественно истинна, то есть принимает значение 1 при любом значении переменной х. Если таких отрезков несколько, укажите тот, который имеет большую длину.

1) [15, 29] 2) [25, 29] 3) [35,39] 4) [49,55]



Решение:

  1. для того, чтобы упростить понимание выражения, обозначим отдельные высказывания буквами

A: x А, P: x P, Q: x Q

  1. перейдем к более простым обозначениям

A(PQ)

  1. выражение R = (PQ) истинно для всех значений x, при которых P и Q равны (либо оба ложны, либо оба истинны)

  2. нарисуем область истинности выражения R = (PQ) на числовой оси (жёлтые области)



  1. импликация AR истинна за исключением случая, когда A=1 и R=0, поэтому на полуотрезках [14,24[ и ]34,44], где R=0, выражение A должно быть обязательно ложно; никаких других ограничений не накладывается

  2. из предложенных ответов этому условия соответствуют отрезки [25,29] и [49,55]; по условию из них нужно выбрать самый длинный

  3. отрезок [25,29] имеет длину 4, а отрезок [49,55] – длину 6, поэтому выбираем отрезок [49, 55]

  4. Ответ: 4.

Ещё пример задания:


На числовой прямой даны два отрезка: P = [20, 50] и Q = [10, 60]. Выберите такой отрезок A, что формула

( (xP) → (x А) ) /\ ( (xA) → (x Q) )



тождественно истинна, то есть принимает значение 1 при любом значении переменной х. Если таких отрезков несколько, укажите тот, который имеет большую длину.

1) [5, 40] 2) [15, 54] 3) [30,58] 4) [5, 70]



Решение:

  1. в этом выражении две импликации связаны с помощью операции И (конъюнкции), поэтому для истинности всего выражения обе импликации должны быть истинными

  2. для того, чтобы упростить понимание выражения, обозначим отдельные высказывания буквами

A: x А, P: x P, Q: x Q

  1. перейдем к более простым обозначениям в обоих условиях

(PA) /\ (AQ)

и выразим импликацию через операции ИЛИ и НЕ:



,



  1. выражение должно быть истинно на всей числовой оси; обозначим область, которую перекрывает выражение – это две полуоси



  1. отсюда следует, что отрезок A должен полностью перекрывать отрезок P; этому условию удовлетворяют варианты ответов 2 и 4

  2. выражение тоже должно быть истинно на всей числовой оси; выражение должно перекрывать все, кроме отрезка, который перекрывает выражение:



  1. поэтому начало отрезка должно быть внутри отрезка [10,20], а его конец – внутри отрезка [50,60]

  2. этим условиям удовлетворяет только вариант 2.

  3. Ответ: 2.
1   2   3   4   5   6   7   8   9


База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница