Основные понятия математической логики




страница1/9
Дата26.02.2016
Размер0.54 Mb.
  1   2   3   4   5   6   7   8   9

© К. Поляков, 2009-2014

A10 (повышенный уровень, время – 2 мин)


Тема: Основные понятия математической логики.

Про обозначения

К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (,,¬), неудобны, интуитивно непонятны и никак не проявляют аналогии с обычной алгеброй. Автор, к своему стыду, до сих пор иногда путает и . Поэтому на его уроках операция «НЕ» обозначается чертой сверху, «И» – знаком умножения (поскольку это все же логическое умножение), а «ИЛИ» – знаком «+» (логическое сложение).


В разных учебниках используют разные обозначения. К счастью, в начале задания ЕГЭ приводится расшифровка закорючек (, ,¬), что еще раз подчеркивает проблему. Далее во всех решениях приводятся два варианта записи.

Что нужно знать:

  • условные обозначения логических операций

¬ A, не A (отрицание, инверсия)

A B, A и B (логическое умножение, конъюнкция)

A B, A или B (логическое сложение, дизъюнкция)

AB импликация (следование)

  • таблицы истинности логических операций «И», «ИЛИ», «НЕ», «импликация» (см. презентацию «Логика»)

  • операцию «импликация» можно выразить через «ИЛИ» и «НЕ»:

AB = ¬ A B или в других обозначениях AB =

¬ (A  B) = ¬ A  ¬ B

¬ (A  B) = ¬ A  ¬ B

Пример задания:


На числовой прямой даны два отрезка: P = [10,39] и Q = [23, 58]. Выберите из предложенных вариантов такой отрезок A, что логическое выражение

((xP) (x A) ) → ((xQ) (x A) )



тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

1) [5, 20] 2) [15, 35] 3) [25, 45] 4) [5, 65]



Решение:

  1. для того, чтобы упростить понимание выражения, обозначим отдельные высказывания буквами

A: x А, P: x P, Q: x Q

  1. перейдем к более простым обозначениям

P AQ A

  1. раскроем импликацию через операции НЕ и ИЛИ ():



  1. раскроем инверсию первого слагаемого по закону де Моргана ():



  1. теперь применим закон поглощения

к последним двум слагаемым:





  1. для того, чтобы выражение было истинно при всех x, нужно, чтобы было истинно там, где ложно , то есть там, где истинно (жёлтая область на рисунке)



  1. таким образом, A должно быть ложно на отрезке [10,23], такое отрезок в предложенном наборе один – это отрезок [25, 45]

  2. Ответ: 3.

Ещё пример задания:


На числовой прямой даны два отрезка: P = [10,30] и Q = [25, 55]. Определите наибольшую возможную длину отрезка A, при котором формула

( xA) → ((xP) (x Q) )



тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

1) 10 2) 20 3) 30 4) 45



Решение:

  1. для того, чтобы упростить понимание выражения, обозначим отдельные высказывания буквами

A: x А, P: x P, Q: x Q

  1. перейдем к более простым обозначениям

A(P + Q)

  1. раскроем импликацию через операции НЕ и ИЛИ ():



  1. для того, чтобы выражение было истинно при всех x, нужно, чтобы было истинно там, где ложно (жёлтая область на рисунке)



  1. поэтому максимальный отрезок, где A может быть истинно (и, соответственно, ложно) – это отрезок [10,55], имеющий длину 45

  2. Ответ: 4.
  1   2   3   4   5   6   7   8   9


База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница