Математический кружок 7 класс Решения занятия №1 Могло ли так быть?




Скачать 57.61 Kb.
Дата04.06.2016
Размер57.61 Kb.
Математический кружок 7 класс

Решения занятия №1 Могло ли так быть?



  1. Докажите, что ребус АБВ+ГДЕ=1000 не может иметь ровно
    а) 2000 решений;
    б) 802 решения;
    в) 555 решений;
    г) 550 решений.

Решение. а) Если как-то определить цифры А, Б, В, то цифры Г, Д, Е можно найти вычитанием ГДЕ=1000-АБВ. Для цифры А – всего 9 вариантов (так как она не равна 0), для цифры Б – 10 и для цифры В – 10. То есть всего не более 900 решений.

б) Так как цифра Г не может быть равна 0, то для цифра А не может быть равна 9. Значит, для цифры А всего 8 вариантов, и ребуса всего не более чем 8*10*10=800 решений. На самом деле, если учесть, что все цифры А, Б, В различные можно понять, что всего решений не больше чем 8*9*8=576

в) Если есть решение АБВ+ГДЕ=1000, то есть и решение ГДЕ+ АБВ=1000. Значит, все решения можно разбить на пары. То есть, количество решений равно числу пар умножить на два. То есть, количество решений должно быть четным. А число 555 – нечетное.

г) Если есть решение АБВ+ГДЕ=1000, то еще есть решения ГДЕ+АБВ=1000, АБЕ+ГДВ=1000, ГДВ+АБЕ=1000 (например, по решению 103+897=1000, можно построить решения 897+103=1000, 107+893=1000, 893+107=1000). Значит, все решения разбиваются на четверки и общее число решений равно числу четверок умножить на 4. То есть должно делиться на 4, а 550 на 4 не делится.

Упражнение. Докажите, что число решений ребуса делится на 8.

Замечание. Важно, что все решения ребуса разбились на четверки - то есть каждое решение входит в какую-то четверку, различные четверки не пересекаются. Например, по любому решению АБВ+ГДЕ=1000, можно построить еще решения ГДЕ+АБВ=1000, АБЕ+ГДВ=1000, ГДВ+АБЕ=1000, АДЕ+ГБВ=1000. Но на самом деле на 5 общее число решений не делится, потому что такие пятерки будут пересекаться.

  1. Верите ли вы, что

а) 8642159786321477 * 97586243018 = 843355905108356606794697584?
б) наибольшее известное простое число равно 23021377 – 1?

Решение. а) Мы не будем считать все произведение, а найдем только его последнюю цифру. Для этого достаточно перемножить последние цифры множителей. А этом случае получится 7*8=56 – то есть последняя цифра произведения должна быть равна 6. А тут стоит 4.

б) Тоже подсчитаем последнюю цифру. Если число заканчивается на 1, то и в любой степени оно будет заканчиваться на 1. Значит, разность будет заканчиваться на 0. А если число заканчивается на 0, то оно делится и на 2 и на 5 и на 10 и поэтому никак не простое.

  1. Незнайка очень внимательно умножил 111122223333 на 123 и получил 13666033469959. Найдите причину по которой Знайка может не пересчитывая сказать, что Незнайка умножать большие числа не умеет.

Решение. Число 123 делится на 3. Значит и произведение чисел должно делиться на 3. Но число 13666033469959 на 3 не делится - это можно проверить по признаку делимости, подсчитав что сумма его цифр на 3 не делится. (На самом деле всю сумму считать не надо – видно, что цифры 0,3,6,9 на делимость на 3 суммы не влияют. Поэтому достаточно сложить 1+4+5=10 и увидеть, что 10 на 3 не делится.)

Замечание. На самом деле Незнайка ошибся совсем чуть-чуть – в одной цифре. Делимость на 3 очень хорошо такие ошибки отлавливает.

  1. Незнайка придумал ребус: САМЫЙ*УМНЫЙ=НЕЗНАЙКА. Имеет ли ребус хоть одно решение?

Решение. Решений у такого ребуса нет. Слева стоит произведение двух пятизначных чисел. Самые маленькие пятизначные числа это 10000 и 10000. Но их произведение это 100000000 – уже 9-значное число, а число НЕЗНАЙКА – 8-значное.

  1. По заданию учителя естествознания Ваня весь 2007 год вел дневник погоды. Он насчитал 128 ясных, 78 пасмурных и 169 дней с переменной облачностью. Однако учителя что-то насторожило в этом отчете... Что же?

Решение. Если верить Ване, то всего в году 128+78+169=375 дней. А учитель знает, что в 2007 году было 365 дней.

  1. Обозначим a, b и c длины сторон треугольника. Докажите, что следующие формулы площади треугольника не верны:
    а)

Первое решение (перестановка букв). Возьмем треугольник со сторонами 1, 2, 2. Если его стороны назвать так a=1, b=2, c=2, то по формуле получится, что площадь равна 3/2. Если же стороны назвать a=2, b=2, c=1 то по формуле получится, что площадь равна 2. Но площадь не может зависеть от того, как мы назовем стороны.

Второе решение (проверка в известном случае). Возьмем прямоугольный треугольник с катетами 3,4. Тогда его площадь должна быть равна , а по этой формуле получается .

Третье решение (проверка по размерности). Если измерять длины сторон в метрах, то величина тоже будет измеряться в метрах. А площадь должна измеряться в метрах квадратных

Четвертое решение. Поскольку мы всегда может стороны назвать a, b, c в каком-то другом порядке, то если бы было верно, что , то было бы верно, что . Но тогда получается, что , откуда , то есть треугольник обязательно равнобедренный. А бывают неравнобедренные треугольники.

Замечание. По сути это тоже решение, что и первое – используется то, что формула не симметричная.

б)



Первое решение (перестановка букв). Возьмем треугольник со сторонами 1, 2, 2. Если его стороны назвать так a=1, b=2, c=2, то по формуле получится, что площадь равна 1/2. Если же стороны назвать a=2, b=2, c=1 то по формуле получится, что площадь равна 0. Но площадь не может зависеть от того, как мы назовем стороны.

Второе решение (проверка в частном случае). Возьмем прямоугольный треугольник с катетами 3,4. Тогда его площадь должна быть равна . Отсюда , значит, c=7. Но треугольника со сторонами 3, 4, 7 не бывает, так как любая сторона треугольника меньше суммы двух других сторон.

Третье решение (проверка по размерности). Если измерять длины сторон в метрах, то величина , тоже будет измеряться в метрах кубических. А площадь должна измеряться в метрах квадратных.

Четвертое решение (обращение в ноль). Если бы было верно, что , то площадь любого равнобедренного треугольника с a=b была бы равна 0. А это неверно.

в)



Первое решение (перестановка букв). Возьмем треугольник со сторонами 1,2,2. Если его стороны назвать так a=1,b=2,c=2, то по формуле получится, что площадь равна 3. Если же стороны назвать a=2,b=2,c=1 то по формуле получится, что площадь равна 8. Но площадь не может зависеть от того, как мы назовем стороны.

Второе решение (проверка в частном случае). Возьмем прямоугольный треугольник с катетами 3,4. Тогда его площадь должна быть равна . Отсюда , значит, c=14. Но треугольника со сторонами 3, 4, 14 не бывает, так как любая сторона треугольника меньше суммы двух других сторон.

Третье решение (оценка в частном случае). Возьмем равносторонний треугольник со стороной 1. По этой формуле его площадь получится равной 2. А этот треугольник можно поместить внутрь квадрата со стороной 1, значит, его площадь должна быть меньше 1.

Замечание. В этом случае площадь будет измеряться в метрах квадратных, так что проверкой по размерности эту формулу не опровергнуть.

г)



Решение (оценка в частном случае). Возьмем равносторонний треугольник со стороной 1. По этой формуле его площадь получится равной 8/3. А этот треугольник можно поместить внутрь квадрата со стороной 1, значит, его площадь должна быть меньше 1.

Замечание. Можно по аналогии с прошлыми пунктами рассмотреть треугольник со сторонами 1,2,2 в эту формулу. Однако в отличие от прошлых пунктов, как не называй стороны, всегда будет получаться одно и тоже, а именно 36/5.. Это связано с тем, что формула не изменяется при перестановке букв a,b,c.

Также в этом случае ничего не дает проверка по размерности.

  1. Однажды профессор консерватории пригласил к себе в гости музыкантов Мартышку, Козла, Осла и Косолапого Мишку. В комнате у профессора вокруг стола стоит несколько стульев. Профессор насчитал 120 способов рассадить на них своих гостей. После этого он решил подсчитать, в скольких способах Мартышка и Мишка сидят на соседних стульях, и насчитал 60 способов. Потом он решил подсчитать, а в скольких способах Козел и Осел не сидят рядом. И насчитал 40 способов. Докажите, что профессор где-то ошибся.

Решение. По мнению профессора вариантов, когда Мартышка и Мишка сидят рядом 60. Но, значит, и вариантов, когда Козел и Осел сидят рядом столько же - тоже 60. Все варианты рассадки можно поделить на две группы: когда Козел и Осел сидят рядом, и все оставшиеся (т.е. когда они не сидят рядом). Вариантов, когда они не сидят рядом – 40. Т.е. вариантов в первой группе 60, а во второй – 40.Значит всего вариантов должно быть 60+40=100, а их, по мнению профессора, 120. Получается, что где-то ошибка!

  1. У профессора Чайникова на полке стоят книги, все авторства разных писателей. Профессор посчитал, что есть ровно 225 способов расставить книги на полке так, чтобы Чехов и Тургенев оказались рядом. Может ли это быть правдой?

Решение. Способы расставить книги можно разбить на пары. А именно каждому способу расставить книги поставим в соответствие способ, где все книги стоят как раньше, только Чехов и Тургенев поменялись местами. При этом если они стояли рядом, то снова будут стоять рядом. Значит, общее число способов расставить книги, так чтобы Чехов и Тургенев стояли рядом, равно количеству пар умножить на два. То есть должно быть четно, а число 225 – нечетно.

Вопрос на понимание Чем это рассуждение похоже на задачу 1в?



База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница