Информационная технология прогноза фармакологической активности химических соединений 14. 00. 25 фармакология, клиническая фармакология



страница2/3
Дата14.08.2016
Размер0.72 Mb.
ТипАвтореферат диссертации
1   2   3

Таблица 1

Итоговые результаты независимой экспериментальной проверки наличия различных видов фармакологической активности у высокоактивных по прогнозу производных конденсированных азотсодержащих гетероциклов


Вид активности

Число соединений

Экстраполяционная

способность, % 3)



Эффективность 4)

Испытанные 1)

Активные 2)

Антиоксидантная

55

35

63,6

1,41

Κ-опиоидная агонистическая

43

28

65,1

2,96

Антиагрегантная

65

64

98,5

2,01

Гемореологическая

36

30

83,3

1,36

Антиаритмическая

44

44

100,0

2,07

P2Y1-антипуринергическая

36

21

58,3

1,13

5-HT3-антисеротониновая

2

2

100,0

1,56

Всего по семи активностям

281

224

81,3

1,79

Примечание. 1. Соединения с достоверной прогнозной оценкой «высокоактивно».

2. Соединения с высокой или умеренной экспериментальной активностью.

3. Отношение числа активных соединений к числу испытанных соединений.

4. Отношение экстраполяционной способности к точности интуитивного прогноза.



Прогноз и экспериментальная проверка уровня фармакологической активности структурно-сходных соединений

Наиболее интересным при направленном поиске в узких рядах является высокий уровень активности. В классе конденсированных азотсодержащих гетероциклов была выполнена проверка прогноза высокой фармакологической активности для 29 ее видов. В скользящем контроле точность прогноза по консервативной стратегии колеблется от 54 до 99 %; по нормальной стратегии – от 63 до 90 %; по рисковой стратегии – от 58 до 90 %. При использовании консервативной стратегии получено только 7 адекватных прогнозных зависимостей; при использовании нормальной стратегии – 18 адекватных прогнозных зависимостей; рисковой стратегии – 20 адекватных прогнозных зависимостей. При использовании лучшей из трех стратегий адекватный прогноз высокого уровня возможен для 24 из 29 видов активности.



Совместное применение трех стратегий с проверкой спектра прогнозных оценок на непротиворечивость. Основано на сопоставлении для прогнозируемых соединений расчетных спектров их активности, полученных для всех ее градаций по трем стратегиям прогноза, с экспериментально детерминированными шаблонами уровней активности. Чем выше соответствие спектра прогнозных оценок экспериментальному шаблону, тем более достоверен прогноз. При полном соответствии все прогнозные оценки градации «высокая» по трем стратегиям положительны, остальные значения в трех наборах оценок должны соответствовать шаблону. Структура с такими прогнозными характеристиками с очень высокой достоверностью должна обладать высокой активностью. Применение данного способа прогноза позволяет в значительной мере компенсировать ошибки классификации, которые возникают при использовании для прогноза недостаточно адекватных решающих правил.

Например, для высокого уровня антиагрегантной активности в ряду конденсированных азотсодержащих гетероциклов не получено ни одной адекватной прогнозной зависимости. С использованием указанного совместного подхода среди этих соединений был проведен эффективный направленный поиск веществ с высоким антиагрегантным действием (см. ниже). Для соединения RU-0101 расчетные оценки высокой активности положительны по всем трем стратегиям, а спектр прогнозных оценок полностью соответствует экспериментальному шаблону. При испытании это вещество оказалось в 1,86 раза более активным, чем препарат сравнения дипиридамол.



Направленный поиск высокоактивных производных конденсированных азотсодержащих гетероциклов. Прогноз высокого уровня семи актуальных видов активности выполнялся по различным схемам, совместно по трем стратегиям, с проверкой спектра прогнозных оценок на непротиворечивость. Вещества для испытаний отбирались в порядке уменьшения числа расчетных оценок «высокоактивно» (от трех до одной) и коэффициента соответствия спектра прогнозных оценок (от единицы до нуля).

Антиагрегантная активность. Прогноз с применением совместного подхода высокого уровня этой активности оказался весьма эффективным, хотя адекватных решающих правил отдельно по стратегиям получить не удалось. Из 842 неиспытанных соединений по прогнозу в трех сериях исследований изучено 65 веществ, из которых 48 оказались высокоактивными. Из этих 48 соединений 12 более активны, чем препарат сравнения дипиридамол и ранее найденное вещество-лидер RU-1202, а 28 соединений сопоставимы по активности c дипиридамолом, из них 21 сопоставимо с RU-1202. Самое активное из найденных веществ RU-0101 (дигидрохлорид 2-фенил-3-гидроксиметил-9-диэтиламиноэтил-имидазо[1,2-a]бензимидазола) в 1,86 раза превышает по активности дипиридамол и в 1,84 раза RU-1202. Точность прогноза высокого уровня антиагрегантной активности достигает 82,6 %, что в 3,62 раза превышает точность интуитивного прогноза.

Κ-опиоидная агонистическая активность. Адекватное решающее правило получено только для нормальной стратегии, но и в этом случае прогноз высокого уровня активности совместным способом оказался очень эффективным. Из 1219 новых соединений испытано по прогнозу в трех сериях исследований 43 вещества, из них 22 оказались высокоактивными. Три соединения более активны, чем препарат сравнения селективный κ опиоидный агонист U-50488 и ранее найденное без применения компьютерного прогноза вещество-лидер RU-0068; одно вещество сопоставимо с ними по активности. Наиболее активное из найденных веществ RU-1203 (дигидрохлорид 2-p-фторфенил-9-пирролидиноноэтил-имидазо[1,2-a]бенз-имидазола) в 3,84 раза более активно, чем U-50488 и в 5,37 раза, чем RU-0068. Максимальная точность прогноза высокого уровня κ-опиоидной агонистической активности составляет 55,6 %, что соответствует эффективности поиска 4,21 раза.

Антиоксидантная активность. Высокий уровень этой активности адекватно прогнозируется по всем трем стратегиям. По совместному методу прогноза из 831 нового соединения в пяти сериях экспериментов исследовано 55 веществ, из которых 24 показали высокую активность. Из них восемь более активны, чем препарат сравнения тролокс С, а 16 соединений сопоставимы с ним по активности. Три вещества превышают активность ранее найденного без применения ИТ «Микрокосм» соединения-лидера RU-0185, семь сопоставимы с ним. Самое активное из найденных веществ RU-0642 (сульфат 2-p-метоксифенил-3-фенил-4-морфолиноэтил-пирроло[1,2-a]бензимидазола) превышает активность тролокса С в 2,56 раза и RU-0185 в 1,47 раза. Наибольшая точность прогноза высокой антиоксидантной активности равна 75,0 %, а эффективность поиска достигает 3,29 раза.

Гемореологическая активность. Адекватное решающее правило удалось получить только по рисковой стратегии, поэтому также использовался совместный прогноз высокого уровня активности. Всего в трех исследованиях из 1007 неиспытанных соединений по прогнозу изучено 36 веществ, из которых 23 показали высокую активность. Среди этих 23 веществ 19 соединений более активны, чем препарат сравнения пентоксифиллин, 6 соединений сопоставимы с ним по активности. Три вещества сопоставимы по активности с ранее найденным соединением-лидером RU-1199. Самое активное из найденных веществ RU-0659 (гидрохлорид 9-(1-фенилэтанон-2-ил)-2,3-дигидро-имидазо[1,2-a]бензимидазола) в 2,27 два раза активнее пентоксифиллина. Точность прогноза высокого уровня гемореологической активности достигает 83,3 %, при эффективности 2,11 раза.

Антиаритмическая активность. По всем трем стратегиям высокий уровень прогнозируется адекватно. Из 862 новых соединений испытано по совместному прогнозу в трех сериях исследований 44 вещества, из которых 35 показали высокую активность. Среди этих 35 соединений 14 веществ более активны, чем препарат сравнения этмозин и 14 сопоставимы с ним по активности. Три вещества сопоставимы по активности с ранее найденным соединением-лидером RU-0703. Наиболее активное из найденных веществ RU-1275 (дигидрохлорид 2-p-фторфенил-1-пирролидинонопропил-имидазо[1,2-a]бензимидазола) в 3,92 раза активнее этмозина. Высокая антиаритмическая активность прогнозировалась с максимальной точностью 82,4 %, которой соответствовала эффективность 3,54 раза.

P2Y1-антипуринергическая активность. Адекватное решающее правило для прогноза высокого уровня активности было получено только для рисковой стратегии. По прогнозу совместным способом из 1174 неиспытанных соединений в двух сериях экспериментов изучено 36 веществ. Среди этих 36 соединений 18 показали высокую активность. 10 веществ более активны, чем препарат сравнения селективный P2Y-антагонист Reactive Blue 2, еще 10 соединений имеют равную с ним активность. Два соединения более активны, чем ранее найденное вещество-лидер RU-0355, 6 соединений сопоставимы с ним по активности. Наиболее активное вещество RU-0125 (динитрат 2-третбутил-9-диэтиламиноэтил-имидазо[1,2-a]бенз-имидазола) в 2,22 раза активнее Reactive Blue 2 и в 1,33 раза активнее RU-0355. Точность прогноза высокого уровня P2Y1-антипуринергической активности в обоих тестах равна 50,0 %, что в 2,16 раза выше точности интуитивного прогноза.

5-HT3-антисеротониновая активность. В рамках комплексной методологии прогноз высокого уровня этой активности был выполнен путем последовательного применения ИТ «Микрокосм» (совместно по трем стратегиям), системы PASS [Филимонов Д. А., Поройков В. В., 2006] и метода 3D-геометрического сходства к эталонным структурам (четыре наиболее активных производных имидазо[1,2-a]бензимидазола). Из 168 новых соединений отобрано два вещества с минимальным средним по трем подходам прогнозным рангом. В эксперименте оба соединения показали высокую активность, точность прогноза составила 100,0 %, эффективность поиска 3,77 раза, в сравнении с интуитивным прогнозом. Одно из двух веществ равно по активности препарату сравнения трописетрону. Другое вещество RU-0026 (дигидрохлорид 2-метил-9-пирролидиноноэтил-имидазо[1,2-a]бензимид-азола) в 1,86 раза активнее трописетрона и сопоставимо по активности с ранее найденным соединением-лидером RU-0064.

Итоги направленного поиска in silico производных конденсированных азотсодержащих гетероциклов с высокой фармакологической активностью. Точность прогноза с применением ИТ «Микрокосм» высокого уровня семи видов активности значительно превышает точность первичного скрининга (табл. 2).

Таблица 2

Итоговые результаты независимой экспериментальной проверки прогноза

высокого уровня различных видов фармакологической активности

производных конденсированных азотсодержащих гетероциклов


Вид активности

Число соединений

Показатели точности прогноза

Nhp 1)

Nht 2)

Fh 3)

Effh 4)

Антиагрегантная

65

48

73,8

3,24

Κ-опиоидная агонистическая

43

22

51,2

3,88

Антиоксидантная

55

24

43,6

1,82

Гемореологическая

36

23

63,9

1,62

Антиаритмическая

44

35

79,5

3,41

P2Y1-антипуринергическая

36

18

50,0

2,16

5-HT3-антисеротониновая

2

2

100,0

3,77

Всего по семи активностям

281

172

66,0

2,84

Примечание. 1. Число испытанных соединений с достоверной прогнозной оценка «высокоактивно».

2. Число испытанных соединений с высокой экспериментальной активностью.

3. Точность прогноза высокой активности, %.

4. Эффективность прогноза высокой активности – отношение точности компьютерного

прогноза к точности интуитивного прогноза.

Показатель Fh изменяется от 43,6 % до 100,0 %, при среднем значении 66,0 %, что соответствует 172 высокоактивным веществам из 281 испытанного; эффективность прогноза Effh варьируется от 1,62 раза до 3,88 раза, составляя в среднем 2,84 раза.

Направленный поиск с применением ИТ «Микрокосм» очень высокоактивных соединений оказался весьма продуктивным (табл. 3).

Таблица 3

Итоговые результаты направленного компьютерного поиска

производных конденсированных азотсодержащих гетероциклов

с высоким уровнем различных видов фармакологической активности


Вид активности

Число испытанных соединений

Nhp

Активнее

препарата

сравнения


Сопоставимых

с препаратом

сравнения


Активнее

соединения 

лидера


Сопоставимых

с соединением 

лидером


Антиагрегантная

65

12

28

12

21

Κ-опиоидная агонистическая

43

3

1

3

1

Антиоксидантная

55

8

16

3

7

Гемореологическая

36

19

6



3

Антиаритмическая

44

14

14



3

P2Y1-антипуринергическая

36

10

10

2

6

5-HT3-антисеротониновая

2

1

1



1

Всего по 7-ми активностям

281

67

76

20

42

Из 281 испытанных по прогнозу веществ 67 (23,8 %) оказались активнее препаратов сравнения, а 76 (27,0 %) сопоставимы c ними по активности – всего найдено 143 соединения (50,9 %) с очень высоким уровнем активности. Среди этих 143 веществ 20 соединений (14,0 %) превышают по активности ранее найденные соединения-лидеры, а 42 соединения (29,4 %) имеют одинаковую с ними активность – всего 62 соединения (43,4 %) являются кандидатами на более подробное изучение. Из них двадцать семь наиболее активных веществ рекомендованы для дальнейших углубленных экспериментальных фармакологических исследований.



Наиболее эффективная схема комплексного прогноза высокого уровня фармакологической активности химических соединений включает в себя следующие этапы: 1) выявление по обучающей выборке с помощью кластерного анализа границ классов основных уровней активности; 2) формирование дополнительных классов активности путем иерархической дизъюнкции основных градаций активности; 3) расчет для всех градаций активности по трем стратегиям прогноза решающих правил и их автотестирование; 4) формирование интегральной прогнозной зависимости в виде набора трех (по числу стратегий) решающих правил для высокого уровня активности и всех троек адекватных решающих правил для других градаций активности; 5) расчет для неиспытанных соединений с помощью интегрального решающего правила спектра итоговых прогнозных оценок градаций активности, соответствующих этому правилу; 7) итоговый прогноз для неиспытанных соединений высокого уровня активности путем обобщения результатов прогноза по трем стратегиям с проверкой спектра прогнозных оценок на непротиворечивость; 8) отбор наиболее перспективных для экспериментального изучения соединений, имеющих по всем трем стратегиям прогнозные оценки «высокоактивно», коэффициенты соответствия спектра прогнозных оценок 1,0 и высокие значения функции принадлежности к классу высокоактивных соединений по консервативной стратегии.

Направленное итеративное конструирование новых активных соединений проводится в несколько стадий: 1) модификация эталонных структур с использованием значимых QL-признаков высокой активности; 2) расчетная оценка активности сконструированных соединений; 3) синтез наиболее активных по прогнозу веществ; 4) их экспериментальное изучение. Указанная процедура повторяется несколько раз. Применение данной схемы позволяет повысить эффективность поиска активных соединений в уже исследованных рядах, а также конструировать новые структуры-основы с более высоким уровнем фармакологического эффекта.

Таким образом, ИТ «Микрокосм» позволяет эффективно решать следующие задачи, связанные с прогнозом фармакологической активности структурно-разнородных и структурно-сходных химических соединений: 1) выполнять прогноз вида и уровня (прежде всего, высокого) активности новых соединений; 2) проводить направленный поиск соединений с высокой активностью, в том числе, новых структур-лидеров; 3) рассчитывать эффективность виртуального скрининга; 4) оценивать перспективность разных химических классов как потенциальных источников новых веществ с определенным видом активности; 5) вычислять структурное разнообразие соединений различных фармакологических групп и определять особенности поиска новых веществ с разными видами активности; 6) использовать, для повышения точности и адекватности прогноза, многочисленные возможности комплексного подхода – иерархическое многоуровневое описание структуры соединений, разные методы и стратегии прогноза, совместное применение стратегий, проверку спектра итоговых прогнозных оценок на непротиворечивость, оптимизированную схему прогноза высокого уровня активности; 7) применять для повышения точности прогноза вспомогательные методы – сходства к эталонным структурам и фармакофорный подход; 8) проводить направленное конструирование соединений с высокой активностью путем модификации эталонных структур с помощью фармакофоров; 9) использовать в направленном поиске высокоактивных веществ, совместно с ИТ «Микрокосм», другие компьютерные QSAR-системы, в том числе, на основе 3D-молекулярного моделирования.



Прогноз фармакологической активности и исследование свойств сложных молекулярных систем

Перспективным методом создания новых препаратов является получение разных солей активного вещества, его молекулярных комплексов и смесей с другими веществами. Эти системы являются супрамолекулярными соединениями, в их стабильность существенный вклад вносят Ван-дер-Ваальсовские взаимодействия [Стид Дж. В. и др., 2007]. В языке QL предусмотрен специальный индекс наличия в структуре соединений нековалентных связей, поэтому ИТ «Микрокосм» позволяет успешно прогнозировать свойства сложных молекулярных систем.



Прогноз и экспериментальная проверка фармакологической активности солей органических соединений. Вышеперечисленные исследования по прогнозу вида и уровня активности структурно-разнородных и структурно-сходных соединений были выполнены для их солей, с использованием в расчетах связанного с основной структурой солеобразующего остатка. Предполагалось, что разная активность различных солей органического соединения объясняется тем, что в воде соль не диссоциирует, а взаимодействует с биосистемой в виде единого комплекса. В скользящем контроле для солей структурно-разнородных соединений точность прогноза вида активности достигала 100 %, а высокого ее уровня – 99 %; для солей структурно-сходных соединений – 99 % в обоих случаях.

Отдельно была выполнена проверка точности прогноза различных уровней трех видов активности для структур 303 производных имидазо[1,2 a]бензимид-азола, с присоединенными к ним кислотными остатками и без них. В скользящем контроле прирост точности прогноза при учете наличия кислотного остатка достиг 12,5 %, а среднее максимальное увеличение составило 6,5 %.

Дополнительно для солей шести неорганических кислот двух производных имидазо[1,2-a]бензимидазола проведена проверка точности прогноза высокого уровня пяти видов активности. В скользящем контроле при учете вида кислотного остатка средняя точность прогноза по консервативной стратегии составила 70 %, по нормальной стратегии – 81 %, по рисковой стратегии – 87 %.

Прогноз и экспериментальная проверка фармакологической активности молекулярных комплексов. Соли органических соединений с органическими кислотами и основаниями являются молекулярными комплексами, поскольку в них солеобразующие остатки способны образовывать невалентные связи. Созданные базы данных по фармакологически активным соединениям, кроме неорганических солей, включают сложные органические соли и неионные межмолекулярные комплексы. Эти структуры также успешно обрабатываются в ИТ «Микрокосм», о чем свидетельствуют приведенные выше результаты проверки точности прогноза.

Специально была выполнена проверка точности прогноза высокого уровня 10 видов активности солей девяти производных имидазо[1,2-a]бензимидазола и 2,3,4,10-тетрагидро-пиримидо[1,2 a]-бензимидазола с пятью органическими кислотами. В скользящем контроле точность прогноза по консервативной стратегии составила 84,4 %, по нормальной и рисковой стратегиям – 78,9 %.



Кроме того, для 16 солей карбоксильных производных 1,2,4-триазола и 2,3,6,7-тетрагидро-пурина с четырьмя органическими основаниями проведена проверка точности прогноза высокого уровня двух видов активности. В скользящем контроле точность прогноза по консервативной стратегии равна 100 %, по нормальной стратегии – 93,3 %, по рисковой стратегии – 100 %.

Поиск молекулярных комплексов производных ГАМК и пирролидона с высокой противоишемической активностью. По базе данных из 27 молекулярных комплексов производных ГАМК и пирролидона с органическими кислотами была выполнена проверка прогноза высокой противоишемической активности для трех ее показателей. В скользящем контроле точность прогноза по консервативной стратегии варьируется от 63 до 79 %; по нормальной стратегии – от 70 до 81 %; по рисковой стратегии – от 67 до 81 %. Полученные решающие правила использованы для прогноза активности 25 новых соединений, совместно по трем показателям и по трем стратегиям, с проверкой спектра прогнозных оценок на непротиворечивость. Испытано по прогнозу три вещества, все оказались сопоставимыми по активности с препаратом сравнения обзиданом, а два – с ранее найденным соединением-лидером RGPU-147. Точность поиска молекулярных комплексов производных ГАМК и пирролидона с высокой противоишемической активностью составила 100,0 %, что в 2,70 раза выше точности интуитивного прогноза.

Прогноз и экспериментальная проверка фармакологической активности смесей природных соединений. Разработка многокомпонентных лекарственных препаратов растительного происхождения является перспективным направлением современной фармакологии. Предполагалось, что субстанция является смесью, если она состоит из нескольких соединений, о виде молекулярных взаимодействий между которыми нельзя сделать каких-либо обоснованных предположений.

Прогноз и экспериментальная проверка спектра фармакологической активности экстракта грецких орехов. Данный экстракт является ветеринарным лекарственным препаратом тодикамп, в его состав входит 23 основных активных вещества [Горлов И. Ф. и др., 2002]. Для этих соединений по консервативной стратегии тремя методами выполнен прогноз 13 видов активности [Васильев П. М. и др., 2000, 2002]. Активность экстракта оценивали по большинству одинаковых оценок в спектре прогнозных оценок активности 23 соединений. По прогнозу тодикамп должен обладать высокой иммуностимулирующей, анаболической и адаптогенной активностями и способностью ускорять заживление ран. Экспериментальная проверка на 60 новорожденных бычках симментальской породы подтвердила результаты прогноза.

Прогноз и экспериментальная проверка гипогликемической активности экстракта Gymnema sylvestre. Этот экстракт является сахароснижающей композицией, в его состав входит семь основных веществ [Yoshikawa M. et al., 1997]. С помощью нормальной стратегии по выборке из известных гипогликемических препаратов проведен прогноз активности семи основных соединений экстракта и шести их смесей разного состава. Ожидаемый уровень активности оценивали по значению функции принадлежности. Результаты прогноза показали, что смесь активных и неактивных компонентов экстракта будет обладать более выраженной гипогликемической активностью, чем любой ее чистый компонент. Полученные результаты соответствуют экспериментальным данным других исследователей [Sugihara Y. et al., 2000; Kimura I., 2006]. Таким образом, ИТ «Микрокосм» позволяет прогнозировать синергетические эффекты в смесях лекарственных веществ. В литературе примеры подобных прогнозов найти не удалось.

Построение моделей сайтов связывания рецепторов и исследование механизмов действия. Комплексы «лиганд – белок» являются классическими супрамолекулярными соединениями [Стид Дж. В. и др., 2007]. Фармакофоры-образы позволяют анализировать механизмы взаимодействия соединений с биомишенями и создавать физико-химически содержательные модели их сайтов связывания. Например, для H1-, H2- и H3-гистаминовых рецепторов было найдено 90 селективных фармакофоров-образов (приведены в приложении к диссертации). Их анализ позволил определить: а) относительные размеры сайтов связывания этих рецепторов; б) характер межмолекулярных взаимодействий с ними различных соединений; в) влияние на селективность лигандов их размера, π-избыточности и параметров заместителей в гетероароматическом ядре – геометрии, распределения зарядов, электроотрицательности, сопряжения. Полученные результаты хорошо согласуются с многочисленными экспериментальными данными других исследователей и подробно изложены в монографии [Спасов А. А. и др., 2007].

Таким образом, ИТ «Микрокосм» позволяет успешно решать следующие задачи, связанные с прогнозом фармакологической активности в сложных молекулярных системах: 1) выполнять прогноз активности солей органических соединений (с учетом влияния солеобразующих остатков), молекулярных комплексов, смесей веществ (с учетом синергизма компонентов); 2) оптимизировать состав многокомпонентных лекарственных препаратов; 3) создавать новые препараты на основе смесей нескольких активных соединений и потенцирующих их действие синергетических добавок; 4) формировать фармакофоры-образы различных видов активности, с их помощью анализировать механизмы взаимодействия лигандов с биомишенями и разрабатывать содержательные модели их сайтов связывания.



Прогноз токсических свойств химических соединений

Проверка прогноза в ИТ «Микрокосм» уровня двух видов острой токсичности LD50 была проведена для 414 производных конденсированных азотсодержащих гетероциклов.

Для острой токсичности LD50(в/б) в скользящем контроле точность прогноза по консервативной стратегии колеблется от 63 до 94 %; по нормальной стратегии – от 61 до 84 %; по рисковой стратегии – от 60 до 79 %. При использовании консервативной и нормальной стратегии получено по две адекватных прогнозных зависимости. При использовании рисковой стратегии получено четыре адекватных прогнозных зависимости. Методом дополнения возможен прогноз всех уровней токсичности.

Для острой токсичности LD50(п/к) в скользящем контроле точность прогноза по консервативной стратегии изменяется от 70 до 90 %; по нормальной стратегии – от 61 до 90 %; по рисковой стратегии – от 57 до 88 %. При использовании консервативной стратегии получена одна адекватная прогнозная зависимость. При использовании нормальной и рисковой стратегий получено по четыре адекватных прогнозных зависимости. Методом дополнения также возможен прогноз всех уровней токсичности.

Новая технология была успешно использована для прогноза канцерогенной опасности сульфенамидных ускорителей вулканизации резин [Старовойтов М. К. и др., 2002; Vassiliev P. M. et al., 2004]. По консервативной стратегии четырьмя методами, с учетом внутренних нековалентных взаимодействий, был выполнен прогноз канцерогенной опасности для человека четырех сульфенамидов и четырех продуктов их термоокислительной деструкции, нитрозоаминов. Дополнительно была экспериментально изучена мутагенная активность чистых сульфенамидов. Совокупные результаты прогноза и экспериментальных исследований позволили с высокой степенью достоверности сделать следующее заключение: 1) сульфенамид М (2-морфолинтио-бензо[d]тиазол) при производстве резинотехнических изделий канцерогенен для человека; 2) сульфенамид ДЦ (2-дициклогексил-аминтио-бензо[d]тиазол) не является в этих условиях канцерогенным фактором.

Таким образом, ИТ «Микрокосм» позволяет успешно решать следующие задачи, связанные с прогнозом токсических свойств веществ: 1) прогнозировать уровень острой токсичности (при различных способах введения) в рядах структурно-сходных химических соединений; 2) выполнять прогноз канцерогенной опасности для человека химических соединений.



ВЫВОДЫ

  1. Комплексный подход к прогнозу фармакологической активности химических соединений является новым научным направлением в решении фундаментальной проблемы соотношения химической структуры и биологической активности, который принципиально отличается от существующих QSAR-подходов тем, что одновременно использует разные по физико-химическому смыслу и уровню сложности избыточные способы описания химической структуры и различные по математическому содержанию методы классификации и схемы принятия решений. Он является методологической основой для создания новых концепций, моделей, методов, компьютерных систем и информационных технологий прогноза фармакологической активности химических соединений. Разработаны основные теоретические концепции новой методологии.

  2. Создана основанная на комплексном подходе новая информационная технология компьютерного прогноза фармакологической активности химических соединений (ИТ «Микрокосм») как совокупность теоретических концепций, математических методов и правил и реализующих их алгоритмов и программ. В процессе разработки новой технологии создан специализированный язык QL описания химической структуры, разработаны четыре метода и три стратегии прогноза, создан специализированный программный комплекс.

  3. ИТ «Микрокосм» является высокоэффективным инструментом для прогноза наличия и уровня самых разных видов фармакологической активности структурно-разнородных и структурно-сходных соединений различных химических классов, что доказано вычислительным тестированием с использованием созданных баз данных (точность в скользящем контроле более 99 %) и экспериментальной проверкой результатов компьютерного прогноза (точность поиска выше 96 %).

  4. ИТ «Микрокосм» может быть успешно применена для прогноза наличия и уровня различных видов фармакологической активности солей, молекулярных комплексов и смесей индивидуальных химических соединений, с учетом синергизма компонентов, что доказано с помощью вычислительного тестирования и путем экспериментальной проверки результатов прогноза (точность превышает 94 %).

  5. ИТ «Микрокосм» позволяет проводить анализ механизмов взаимодействия лигандов с сайтами связывания рецепторов и выполнять построение адекватных и физико-химически содержательных моделей этих сайтов, что показано на примере H1-, H2- и H3-гистаминовых рецепторов.

  6. ИТ «Микрокосм» является универсальной QSAR-технологией и позволяет in silico выполнять поиск фармакологически активных веществ с общесистемными эффектами, имеющими множественные механизмы действия, а также веществ, селективно взаимодействующих с основными типами биомишеней, которые обуславливают рецепторные и пострецепторные механизмы действия, такими, как G-белок сопряженные рецепторы, лиганд-зависимые ионные каналы, ферменты.

  7. С помощью ИТ «Микрокосм» успешно выполняется прогноз наличия и уровня различных токсических эффектов в рядах структурно-разнородных и структурно-сходных соединений, что доказано на примере острой токсичности и канцерогенной опасности вычислительным и экспериментальным способами (точность прогноза более 92 %).

  8. Проведен эффективный направленный поиск высокоактивных соединений среди 1312 новых производных конденсированных азотсодержащих гетероциклов. Коэффициент эффективности виртуального скрининга в среднем равен 39 раз, максимальная эффективность компьютерного поиска высокоактивных соединений, в сравнении с интуитивным прогнозом, составляет 4,21 раза. Всего найдено 172 высокоактивных вещества, в том числе 143 соединения, сопоставимых по активности или активнее препаратов сравнения. Среди этих веществ 62 соединения сопоставимы либо превышают по активности ранее найденные соединения-лидеры. По видам активности: найдено 48 веществ с высокой антиагрегантной активностью, среди них 12 соединений превышают по активности препарат сравнения дипиридамол; 35 веществ с высокой антиаритмической активностью, из которых 14 соединений превосходят по активности препарат сравнения этмозин; 24 вещества с высокой антиоксидантной активностью, из них 8 соединений проявляют более высокую активность, чем препарат сравнения тролокс C; 23 вещества с высокой гемореологической активностью, среди которых 19 соединений более активны, чем препарат сравнения пентоксифиллин; 18 веществ с высокой P2Y1-антипуринергической активностью, в том числе 10 веществ активнее препарата сравнения Reactive Blue 2; 22 вещества с высокой κ-опиоидной агонистической активностью, из которых три соединения превышают по активности препарат сравнения U-50488; два вещества с высокой 5-HT3-антисеротониновой активностью, одно из которых активнее препарата сравнения трописетрона. Двадцать семь наиболее активных соединений этого ряда рекомендованы для углубленных экспериментальных фармакологических исследований, на них поданы заявки на патенты.

  9. Проведен направленный поиск среди 123 новых производных адамантана соединений с противовирусной, ноотропной и антиоксидантной активностью. Найдены три вещества с потенциально высокой антиортовирусной активностью, три вещества с ноотропной активностью, одно вещество с высокой антиоксидантной активностью.

  10. В ряду 52 производных ГАМК и пирролидона проведен направленный поиск соединений с высоким уровнем противоишемической активности. Выявлено три высокоактивных вещества, одно из которых рекомендовано для последующих углубленных фармакологических исследований.

  11. ИТ «Микрокосм» позволяет решать разнообразные фармакологические задачи, такие, как направленный поиск наиболее активных и наименее токсичных веществ разных химических классов; выявление или конструирование новых соединений-лидеров; оптимизация состава солей, межмолекулярных комплексов и смесей индивидуальных химических соединений; создание с учетом синергизма высокоэффективных и низкотоксичных многокомпонентных лекарственных средств; исследование механизмов действия и построение моделей сайтов связывания рецепторов с лигандами.

СПИСОК ОСНОВНЫХ РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Монографии, обзоры, статьи в журналах списка ВАК

  1. Гистаминовые рецепторы (молекулярно-биологические и фармакологические аспекты): монография / А. А. Спасов, М. В. Черников, П. М. Васильев, В. А. Анисимова. – Волгоград: Изд-во ВолГМУ, 2007. – 152 с.

  2. Васильев, П. М. Языки фрагментарного кодирования структуры соединений для компьютерного прогноза биологической активности / П. М. Васильев, А. А. Спасов // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д. И. Менделеева). – 2006. – Т. 50. – № 2. – С. 108-127.

  3. Васильев, П. М. Применение компьютерной информационной технологии для прогноза фармакологической активности структурно разнородных химических соединений / П. М. Васильев, А. А. Спасов // Вестн. Волгогр. гос. мед. ун-та. – 2005. – № 1 (13). – С. 23-30.

  4. Васильев, П. М. Компьютерный прогноз и экспериментальная проверка антиоксидантной активности новых химических соединений с использованием QSAR-зависимостей / П. М. Васильев, А. А. Спасов [и др.] // Там же. – № 2 (14). – С. 16-19.

  5. Васильев, П. М. Компьютерный прогноз спектра фармакологических свойств активных соединений экстракта грецких орехов / П. М. Васильев, И. Ф. Горлов, О. С. Юрина // Докл. РАСХН. – 2002. – № 2. – С. 55-58.

  6. Каталог: uploads -> dsovet -> autoref
    autoref -> Социальная оценка качества жизни больных с экзогенно-конституциональным ожирением 14. 02. 05 социология медицины
    autoref -> Особенности течения и лечения переломов нижней челюсти, сопровождающихся повреждением третьей ветви тройничного нерва 14. 01. 14. стоматология
    autoref -> Массовая иммунизация в социальной группе студентов (опыт социологического анализа) 14. 02. 05 социология медицины
    autoref -> Личность в культуре серебряного века: александр бенуа 24. 00. 01 теория и история культуры
    autoref -> Роль благотворительности в формировании музейной сети нижнего поволжья ( конец XIX начало XX вв.) 24. 00. 01 теория и история культуры
    autoref -> Профилактика внутриматочных синехий при самопроизвольном аборте 14. 01. 01 акушерство и гинекология
    autoref -> Медико-социологический анализ влияния комплаентности родителей на эффективность профилактики заболеваний зубов у детей раннего возраста 14. 02. 05 социология медицины 14. 01. 14 стоматология
    autoref -> Значение эндотоксина в прогнозировании осложнений ранних сроков беременности у женщин с синдромом потери плода 14. 01. 01 Акушерство и гинекология
    autoref -> Оценка фармакодинамики комбинаций препаратов, применяемых для тотальной внутривенной анестезии 14. 03. 06 фармакология и клиническая фармакология
    autoref -> Возрастная модуляция фенотипической пластичности гипоталамо-гипофизарно-надпочечниковой системы при хроническом действии стрессоров 03. 03. 04 клеточная биология, цитология, гистология


    Поделитесь с Вашими друзьями:
1   2   3


База данных защищена авторским правом ©uverenniy.ru 2019
обратиться к администрации

    Главная страница