Чрезвычайные ситуации мирного и военного времени. Характеристика зон чрезвычайных ситуаций Методическая разработка для студентов всех специальностей дневной формы обучения Н. Новгород 2006




страница2/4
Дата17.07.2016
Размер0.67 Mb.
1   2   3   4

Радиационная авария – потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильностью действий персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей сверх установленных норм или радиоактивному заражению окружающей среды [13].

Авария радиационная проектная – авария, для которой проектом определены исходные и конечные состояния радиационной обстановки и предусмотрены системы безопасности [13].

Гипотетическая авария – авария, для которой проектом не предусматриваются технические меры, обеспечивающие радиационную безопасность персонала и населения [13,16].

Ядерная авария – авария, связанная с повреждением активной зоны с превышением установленных проектных пределов ядерного реактора и с потенциально опасным аварийным облучением персонала [16,13].

Следует сказать, что ядерный взрыв реактора невозможен, так как металла его расплавленных конструкций достаточно для погашения цепной реакции деления. Например, это показали физический расчет реактора и в 1961 г. катастрофа на атомной подводной лодке «К-19» [16].

Непосредственные последствия радиационной аварии (РА) АС обуславли­ваются радиоактивным заражением (РЗ) объектов, окружающей среды и пора­жающим действием ионизирующих излучений – α_, β_, γ_, нейтронное (n) излуче­ние. В этом случае может иметь место как внутреннее облучение (при попадании РВ внутрь организма), так и внешнее облучение от них (при нахождении РВ вне тела человека). Опасность от α_ и β_ частиц возникает особенно при внутреннем, а не при внешнем облучении, так как они обладают высокой ионизирующей и не­большой проникающей способностью. Защитой от них соответ­ственно может служить одежда, кожа и стекла очков, экран, например из алю­миния, толщиной более 5 мм и др. Однако следует учитывать, что α_ распад (на­пример, радий-226) и β_ распад (например кобальт-60), многих РВ сопровождает­ся γ_ излучением и при работе с ними необходима специальная защита. Опасным для человека оказывается также внешнее облучение γ_ лучами и нейтронами, об­ладающими высокой проникающей и незначительной ионизирующей способно­стью. При защите от нейтронных, γ_ излучений применяют материалы, обла­дающие высокими замедляющими и поглощающими свойствами, например, карбид бора (В4С), бористая сталь, свинец и др.

Для характеристики поглощающих и защитных свойств различных материа­лов вводится понятие толщина слоя половинного ослабления γ_ и нейтронного из­лучения (dпол). dпол – это толщина такого слоя материала, при прохождении через который интенсивность γ_ и нейтронного излучения уменьшается в 2 раза. Значения dпол приводятся в справочниках, например dпол для γ_ и нейтронного излуче­ния соответственно: для стали – 3 см и 5 см; бетона – 10 см и 12 см; грунта – 14,4 см и 12 см. На практике толщину защиты приближенно в инженерных расчетах определяют, используя зависимость между коэффициентом ослабления (Косл) и слоем половинного ослабления (dпол)

, (1)

где m=h/ dпол – число слоев половинного ослабления;



hтолщина слоя защиты (защитного экрана, сооружения и т.п.).

Коэффициент ослабления (Косл) это величина, показывающая во сколько раз данная защита ослабляет γ_ и поток нейтронного излучения. Он является важным па­раметром защитных сооружений. При наличии сложной защиты, состоящей из нескольких разнородных материалов, общий коэффициент ослабления равен про­изведению коэффициентов ослабления каждого материала.

(2)

где - коэффициенты ослабления для различных видов материалов.

Значения Косл находят по специальным таблицам, приводимым в справочни­ках.

Важнейшими дозиметрическими параметрами, характеризующими радиаци­онное воздействие ионизирующего излучения, а также критериями, определяю­щими меру его опасности для человека, являются ДОЗА И МОЩНОСТЬ ДОЗЫ ИЗЛУЧЕНИЯ (табл.2). Для характеристики степени, глубины и формы воздейст­вия излучений на облучаемое тело, зависящих, прежде всего, от величины погло­щенной им энергии, вводят понятие ПОГЛОЩЕННОЙ ДОЗЫ ИЗЛУЧЕНИЯ (DП). Она показывает среднюю энергию излучения, которая поглощается облучаемым объектом с единичной массой. За единицу измерения DП принимается: в СИ - грей, 1Гр=1Дж/кг, внесистемная - рад. Соотношение между ними 1Гр=100 рад. Однако наиболее просто можно измерить дозу излучения по эффекту ионизации воздуха (т.е. по возникновению заряда в воздухе), который в практике и принимается в ка­честве эквивалентного вещества. Поэтому в практической дозиметрии для харак­теристики дозы по данному эффекту, оценки радиационной обстановки (РО) на местности, в помещениях, обусловленной внешним γ_ или рентгеновским (фо­тонным) излучением, используют внесистемный параметр - понятие ЭКСПОЗИЦИОННОЙ ДОЗЫ ОБЛУ­ЧЕНИЯ (DЭКС). Она характеризует ионизирующую способность излучения в воз­духе и имеет размерности: внесистемная единица – рентген (Р), а в системе СИ (табл.2) не применяется [4]. Соотношение между поглощенной дозой в радах и экспозиционной дозой в рентгенах (табл.2): в воздухе – DЭКС (Р) = 0.873 DП(рад) или D(рад) = 1,14 D (P).

Таблица 2

Единицы измерения параметров ионизирующих излучений и радиоактивности




п/п

Параметры

Определяющая зависимость

Единицы измерения

Соотношение между единицами измерения

В системе СИ

Внесис­темные

1

Поглощенная доза

DП= dE/dm

Гр; мГр; мкГр

рад; мрад; мкрад

1 Гр=1 Дж/кг

1 Гр=100рад

1мГр = 10-3Гр

1 мрад =10-3 рад



2

Экспозиционная доза фотонного излуче­ния

DЭКС= dq/dm

(Кл/кг)


Р; мР, мкР

1Р=2,58 10-4 Кл/кг

1 Кл/кг =3886 Р



3

Эквивалентная доза

DЭКВ Т =WrDn

Зв; мЗв; мкЗв

бэр; мбэр, мкбэр

1 Зв = 100 бэр

1 мЗв=0,1 бэр

(1 бэр = 10мЗв)


4

Эффективная доза

DЭФФТ =

Dэкв ТWТ

Зв; мЗв, мкЗв

бэр; мбэр: мкбэр

1 Зв = 100 бэр

1 мЗв=0.1 бэр

(1 бэр = 10мЗв)


5

5 Энергетический эквивалент рентгена




а) для воздуха

8,73 мДж/кг

87,3 эрг / г

б) в живой ткани

93 эрг / г


а) для воздуха

1 Р=8,73 мДж/кг

или 1P = 0,873 paд,

1Р=8,73-103Гр=

=0,873 рад1рад


6

6 Мощность погло­щенной дозы излучения

Pn=dDn /dt

Гр/с; Гр/ч, мГр/с

рад/с; мрад/с

1 Гр/ч= 100 рад/с

7

7 Мощность экспози­ционной дозы излучения

Pэксn=dDэксn /dt

(А/кг)


Р/с; Р/ч;

мР/ч;


мкР/ч

1 А/кг=1 Кл/(кгс)

8

8 Мощность эквива­лентной дозы излучения

Pэкв=dDэкв /dt

Зв/с, мЗв/с

бэр/ с;

бэр / ч; мбэр / с



1 Зв/с= 100 бэр/с

9

Энергия излучения

E

Дж

эВ

1эВ=1,6 10-19 Дж

10

10 Активность радио­нуклида

A=dn/dt

Бк

Кu

1 Бк = 1 расп/с

1Кu=3,7 1010 Бк



11

11 Поверхностная ак­тивность, уровень загрязнения, плотность заражения

A=A/S

Бк/км2


Кu/км2





12

12 Объемная актив­ность (концентрация)

AУД=A/V

Бк/м3

Кu/м3




13

13 Удельная (массовая) активность источника

Am= AУД =A/m

Бк/кг

Кu/кг




В практике принимают 1P = 0,873 рад1рад или 1рад=1,14Р1P, характеризуя сравнительно с небольшой ошибкой поражающее действие фотонного излучения в рентгенах; в живой ткани – DЭКС (Р) = 0,93DП (рад) и 1P=0,93рад1рад. Зна­чение коэффициента 0,873 или 1,14 называют ЭНЕРГЕТИЧЕСКИМ ЭКВИВА­ЛЕНТОМ РЕНТГЕНА. Для характеристики биологического воздействия ионизи­рующих излучений на человека используют параметры ЭКВИВАЛЕНТНАЯ ДО­ЗА И ЭФФЕКТИВНАЯ ДОЗА.

Согласно «Нормам радиационной безопасности (НРБ-99)» даются следую­щие их определения [13]. ЭКВИВАЛЕНТНАЯ ДОЗА - поглощенная доза (DП) в органе или ткани, ум­ноженная на соответствующий взвешивающий коэффициент для данного вида из­лучения (WR ):


DЭКВТ = DП WR , (3)

где DП - поглощенная доза излучений в органе или ткани;



WR - взвешивающий коэффициент для данного вида излучения (табл.3).

В системе СИ она измеряется в зивертах (Зв=Дж/кг), а внесистемная единица — бэр (биологический эквивалент рада).

В НРБ-99 приведена таблица, где указаны значения взвешивающих коэффи­циентов (табл.3 и табл.4).

ЭФФЕКТИВНАЯ ДОЗА - это величина, используемая как мера риска воз­никновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Эффективная доза представляет собой сумму произведений эквивалентной дозы в органах и тканях (DЭКВ) на соответствующий взвешивающий коэффициент для данного органа или ткани (WТ):



, (4)

где DЭКВТ – эквивалентная доза в органе или ткани (Т);



WT - взвешивающий коэффициент для органа или ткани (Т), табл.4.

Таблица 3



Взвешивающие коэффициенты для отдельных видов излучения

(при расчете эквивалентной дозы)




Виды излучения

Значения взвешивающего коэффициента WR

Фотоны (, рентгеновское излучение) любых энергий

1

Электроны и мюоны любых энергий

1

Нейтроны энергией Е 10 кэВ

от 10 кэВ до 100 кэВ

от 100 кэВ до 2МэВ

от 2 МэВ до 20 МэВ

более 20 МэВ


5

10

20



10

5


Протоны (кроме протонов отдачи), энергия Е 2

5

Альфа-частицы, осколки деления, тяжелые ядра

20

Таблица 4



Взвешивающие коэффициенты для тканей и органов

(при расчете эффективной дозы)




№ п/п

Взвешивающие коэффициенты для тканей и органов

Значения коэффи­циента WТ

1

Гонады (половые железы и т.п.)

0,2

2

Костный мозг (красный)

0,12

3

Толстый кишечник (прямая, сигмовидная, нис­ходящая часть ободочной кишки)

0,12

4

Легкие

0,12

5

Желудок

0,12

6

Мочевой пузырь

0,05

7

Грудная железа

0,05

8

Печень

0,05

9

Пищевод

0,05

10

Щитовидная железа

0,05

11

Кожа

0,01

12

Клетки костных поверхностей

0,01

13

Остальные

0,05

Единица измерения эффективной дозы в системе СИ - зиверт (Зв), а внесис­темная единица – бэр (табл.2). Значения WT представлены в табл.4 (согласно НРБ-99). ВЗВЕШИВАЮЩИЕ КОЭФФИЦИЕНТЫ (WR WT) характеризуют [13,16] отношение риска стохастического (вероятностного) эффекта облучения данного органа (тка­ни) к суммарному риску стохастического эффекта при равномерном облучении всего тела. Они позволяют выровнять риск облучения вне зависимости от того, облучается ли все тело равномерно или неравномерно.

Примечание: стохастический (вероятностный) эффект – это вероятность возникновения радиационного эффекта облучения людей [13,16].

Следовательно, в случае β_, γ_ распада РВ: WR=1 (табл.3) и 1 Зв = =1Гр; 1бэр=1рад.

Важным фактором при воздействии ионизирующих излучений на живые ор­ганизмы является время облучения. Поглощенная, экспозиционная и эквивалент­ная дозы излучения, отнесенные к единице времени, называются соответственно мощностью поглощенной, экспозиционной и эквивалентной дозы. Их единицы измерения даны в табл. 2. В практической дозиметрии для оценки РЗ местности γ_ излучением часто используют понятие УРОВЕНЬ РАДИАЦИИ. Под уровнем ра­диации понимают мощность экспозиционной дозы γ_ излучения, измеренной на высоте 0,7 - 1 м над зараженной поверхностью. Уровень радиации чаще всего из­меряют в Р/ч, мР/ч, мкР/ч.

Однако, учитывая еще широкое использование этих понятий в практической дозиметрии [25,16], по завершении и во время переходного периода значе­ния этих величин следует учитывать не в единицах СИ (Кл/кг; А/кг), а во внесис­темных единицах рентген (Р), рентген в час (Р/ч) и т.п.

Меру количества РВ (источник ионизирующих излучений), выраженную числом р/а превращений (распада) в единицу времени, называют активностью. Скорость распада РВ измеряется периодом полураспада (Т1/2). Размерность актив­ности РВ принята: в СИ — Беккерель (Бк), внесистемная - кюри (Кu). Соотноше­ние между ними: 1Бк=1расп/с; 1 Кu =3,7·1010 Бк или 1 Кu=2,2·1012расп/мин. В дозиметрии при определении степени заражения больших площадей, поверхно­стей предметов, оборудования, воздуха радиоактивными веществами вводят по­нятия о поверхностной, объемной и удельной активностях источника (табл.2).

Активность РВ, отнесенная к единице объема или массы, называется соответственно объем­ной активностью (концентрацией) в Бк/м3 , Ku3 , Кu/л и удельной активностью (массовая) в Бк/кг, Ku/кг, а к единице поверхности - поверхностной активностью (плотность заражения или уровень загрязнения), выражается в Бк/км2, Ku/км2 (табл.2).

В полевых условиях или в практике с помощью дозиметрических приборов степень радиоактивного заражения (РЗ) местности или поверхности оборудова­ния, предметов РВ ввиду простоты удобно определять соответственно измерени­ем уровня радиации или мощности экспозиционной дозы γ_ излучения, имеющего­ся преимущественно на радиоактивном следе, а не уровнем загрязнения (плот­ность заражения), Кu /км2 [5,16-19] .

Следует сказать, что радиоактивное заражение территорий после ЯВ и аварии на РОО в основном обусловлено γ_, β_ излучениями, так как нейтронным излучением через небольшой промежуток времени можно пренебречь [16,3,5]. Поэтому в практической дозиметрии:

а) в качестве параметров, характеризующих воздействие излучений на людей, используют [19,20]:

- при γ_ излучении: экспозиционную дозу γ_ излучения DЭКС, P;

- при смешанном γ_, n_ излучении: поглощенную дозу излучения DП, рад или Гр.

Их измеряют с помощью группы приборов дозиметрического контроля – дозиметры [19]. Следовательно, дозиметры – это приборы контроля индивидуальной дозы излучения [4,5,7].

б) для контроля степени РЗ местности по γ_, β_ излучениям используют параметр уровень радиации РЭКС, Р/ч, мР/ч, мкР/ч и т.п.;

в) для контроля степени РЗ по γ_ излученияю различных поверхностей применяют параметр – мощность экспозиционной дозы γ_ излучения.

Параметры, уровень радиации и мощность экспозиционной дозы γ_ излучения измеряют с помощью группы приборов дозиметрического контроля – рентгенметры (измерители мощности дозы). Эта группа приборов является основными приборами разведки местности на предмет ее РЗ [4,19,20,5].

В результате радиационного воздействия ионизирующих излучений на живой организм нарушаются нормальное течение биохимических процессов и обмен веществ в нем. Не каждый организм и орган человека одинаково реа­гирует на облучение. При этом также следует учесть радиолиз воды в организме человека (ее до 70%). Биохимический эффект в организме происходит как при внешнем, так и при внутреннем облучении, соответственно имеют место общее и местное облучения. При этом также различают однократные (до 4 суток) и много­кратные (более 4 суток) облучения. Для поддержания режима РБ на АС «Норма­ми по радиационной безопасности (НРБ 99)» установлены пре­делы доз. Так, предельно допустимая эффективная (ПДДЭФ) доза однократного внешнего облучения всего тела за год [13]: для персонала - 2 бэр (20 мЗв) и населения - 0,1 бэр (10 мЗв), не включающая дозу облучения существующим естественным фоном в СНГ (ранее в СССР) 175 мбэр (1, 75 мЗв) или в практике принимают примерно


200 мбэр (2 мЗв). При выполнении же аварийных работ на АС [13] макси­мально накопленная доза (разовая) не должна превышать 10 бэр с разрешения территориальных органов госсанэпиднадзора и 20 бэр – Госкомсанэпиднадзора (Ростехатомнадзор с 2004 г.) РФ (табл.5).

Примечание. В результате реформирования Правительства РФ (2004 г.) в структуре федеральных органов исполнительной власти имеются: Федеральное агентство по атомной энергии (Росатом) и Федеральная служба по экологическому, технологическому и атомному надзору (Ростехатомнадзор).


Таблица 5
1   2   3   4


База данных защищена авторским правом ©uverenniy.ru 2016
обратиться к администрации

    Главная страница