2 Основы биологии 2 Строение мышцы



Скачать 385.36 Kb.
страница2/3
Дата14.08.2016
Размер385.36 Kb.
1   2   3

2.2.2. Нервно-мышечные процессы

2.2.2.1. Двигательная единица

Отросток двигательного нерва, находящегося в спинном мозге (двигательная клетка переднего рога), достигает мышечного волокна. Нервная клетка иннервирует своими отростками большое количество мышечных волокон. Нервная клетка и связанные с ней мышечные волокна называются двигательной единицей (рис. 6).



Рис. 6 Схема двигательной единицы


1 - костный мозг, 2 - тело клетки. 3 - нерв спинного мозга, 4 - двигательное нервное волокно, 5 - чувствителыюе нервное волокно, 6 -мышца с мышечными волокнами.

Состав мышц может очень различаться по количеству двигательных единиц, а двигательные единицы в свою очередь могут состоять из самого различного количества мышечных волокон. Все мышечные волокна одной двигательной единицы относятся к одному и тому же типу волокон (FT- или ST-волокна). Мышцы, в функцию которых входит выполнение очень тонких и точных движений (например, мышцы глаз или пальцев руки, обладают обычно большим количеством двигательных единиц (от 1500 до 3000); в их состав входит небольшое количество мышечных волокон (от 8 до 50). Мышцы, выполняющие относительно грубые движения (например, большие мышцы конечностей), обладают, как правило, значительно меньшим количеством двигательных единиц, но с большим числом волокон на каждую (от 600 до 2000). Так, например, бицепс (см. рис. 60 а) может содержать в своем составе более миллиона волокон. Эти мышечные волокна вместе со своими нервными окончаниями образуют более чем 600 двигательные единиц, так что одна двигательная клетка переднего рога спинного мозга иннервирует своими отростками около 1500 мышечных волокон. В большеберцовой мышце около 1600 и в мышцах спины до 2000 мышечных волокон иннервируются одной клеткой переднего рога, образуя таким способом в каждом случае двигательную единицу. Однако количество волокон в двигательных единицах какой-либо мышцы не одинаково, например, в бицепсе может быть 1000, 1200, 1400 или 1600 волокон.

Принадлежность мышечных волокон к определенной двигательной единице задается от природы и не может быть изменена тренировкой.
Двигательные единицы активизируются по закону „все или ничего". Таким образом, если от тела двигательной клетки переднего рога спинного мозга посылается по нервным путям импульс, то на него реагируют или все мышечные волокна двигательной единицы, или ни одного. Для бицепса это означает следующее: при нервном импульсе необходимой силы укорачиваются все сократительные элементы (миофибриллы) всех (примерно 1500) мышечных волокон соответствующей двигательной единицы.

Сила двигательной единицы зависит, в частности, и от количества ее мышечных волокон. Двигательные единицы с небольшим количеством волокон при единичном сокращении развивают силу тяги всего лишь в несколько миллиньютонов. Двигательные единицы с большим количеством волокон - несколько ньютонов. Силовой потенциал отдельной двигательной единицы относительно небольшой, поэтому для выполнения движения одновременно „подключается" несколько двигательные единиц. Чем выше преодолеваемое сопротивление, тем больше двигательных единиц должно выполнять движение.

Каждая двигательная единица имеет свой индивидуальный порог возбуждения, который может быть низким или высоким. Если импульсный залп (раздражение нерва, вызывающее сокращение мышцы) слаб, то тогда активизируются лишь двигательные единицы, обладающие низким порогом возбуждения. Если импульсный залп усиливается, начинают реагировать дополнительные двигательные единицы с более высоким порогом возбуждения.

С увеличением сопротивления активизируется все больше двигательных единиц. Быстрота индивидуальных порогов возбуждения зависит главным образом от состояния двигательных единиц. Для продолжения деятельности двигательных единиц, которые утомляются от: а) накопления кислых продуктов обмена веществ (лактат, СО2); б) истощения энергоносителей (энергетические фосфаты, гликоген и т.п.); в) нервного перевозбуждения (в двигательной единице или в коре головного мозга), требуется все больше и больше волевых усилий.



2.2.2.2. Внутримышечная координация и частота импульсов

Постоянное изменение количества участвующих в движении двигательных единиц (пространственная суммация) и изменение частоты нервных импульсов (временная суммация) регулируется очень тонкой градацией сократительной силы мышцы.



Пространственная суммация. Для выполнения движения может быть задействовано различное количество двигательных единиц благодаря механизму ступенчатого развития силы. Однако этот механизм, обусловленный дифференцированным строением мышц, очень неоднороден. Количество ступеней определяется количеством двигательных единиц, из которых состоит мышца; размер ступеней зависит, в частности, от количества, поперечника и строения мышечных волокон, которыми располагает соответствующая двигательная единица. Например, в состав мышц пальцев кисти входит чрезвычайно много двигательных единиц с небольшим количеством волокон (многочисленные маленькие ступени), поэтому сила, с которой они выполняют движения, может быть „градуирована" при помощи пространственной суммации гораздо тоньше, чем сила бицепса, обладающего относительно малым количеством двигательных единиц и большим числом волокон (немногочисленные большие ступени).

Временная суммация. Если двигательная единица активизируется лишь путем искусственного раздражения, например, электрической стимуляцией, то все ее мышечные волокна укорачиваются, а затем снова расслабляются (рис. 7а).

Рис. 7а Схема феномена временной суммации

Однако в здоровом организме в естественных условиях произвольные одиночные импульсы или сокращения не возникают. Сокращение мышцы всегда обуславливается действием серии импульсов в секунду. Если второй сократительный импульс подаётся еще до окончания фазы расслабления волокон, то в этом случае второе сокращение наслоится на первое. Следствие этого - более высокое развитие силы. Если нужно развить большую силу, то второй импульс уже должен достичь волокон двигательной единицы незадолго до окончания фазы сокращения. Тогда волокна снова сократятся еще до начала фазы расслабления; спад напряжения или силы в этом случае невозможен (рис. 7 b). Последующие сокращения вытекают из предыдущих.

Рис. 7Ь Схема феномена временной суммации

Когда, наконец, многочисленные нервные импульсы начинают следовать друг за другом достаточно быстро, отдельные сокращения полностью перекрываются. Таким способом, в отличие от одиночного сокращения, достигаются гораздо более сильные сокращения мышечных волокон, что приводит к 3-4-х кратному увеличению силы. Это явление называется титаническим сокращением (рис. 7 с). Необходимая для полного тетанического сокращения частота импульсов определяется соответствующим типом волокна двигательной единицы. В связи с тем, что быстрые FT-волокна, по сравнению с медленными ST-волокнами, гораздо быстрее сокращаются и расслабляются, импульсы также должны в более короткие промежутки попадать в волокна для того, чтобы можно было помешать их расслаблению и тем самым развить большую силу.

Рис. 7с Схема наслаивания отдельных сокращений до момента возникновения тетанического сокращения рутем увеличения частоты импульсов

Поэтому у быстрых двигательных единиц импульсы низкой частоты (7-10 за с) вызывают лишь незначительное напряжение и такую же силу, импульсы средней частоты (25-30 за с) соответственно умеренное напряжение и силу, импульсы высокой частоты (от 45 за с и выше) - максимальное напряжение и максимальную силу (рис. 8).

Рис. 8 Взаимосвязь между числом нервных импульсов в секунду и силой сокращения мышц в процентах к максимальной силе; среднее значение многочисленных двигательных единиц; отведение от абдуктора мизинца (по Бигланду и Липпольду)

Для медленных двигательных единиц, состоящих из ST-волокон, уже 20 импульсов в секунду может быть достаточно для исчерпания их силового потенциала. Лишь при одном, самом благоприятном для соответствующей двигательной единицы, временном промежутке между импульсами можно добиться оптимального эффекта временной суммации. Более высокая частота импульсов для данной двигательной единицы не может вызвать более сильного сокращения и, следовательно, увеличения силы. Продолжительность титанического сокращения может превышать продолжительность одиночного сокращения в десятки и тысячи раз.

Мышца, состоящая большей частью из ST-волокон, более устойчивых к воздействию утомляемости, может поддерживать титаническое сокращение обычно значительно дольше, чем мышца, в составе которой содержатся преимущественно быстро утомляющиеся FT-волокна. В упрощенном изложении „кооперирование" пространственной и временной суммации происходит следующим образом: небольшие силовые потребности удовлетворяются медленными, состоящими из ST-волокон двигательными единицами, обладающими низким порогом возбуждения. При увеличении силовых потребностей включаются двигательные единицы, имеющие более высокий порог возбуждения (пространственная суммация). Одновременно за счет повышения частоты импульсов увеличивается силовая отдача уже работающих низкопороговых единиц (временная суммация). При дальнейшем увеличении силовых потребностей в работу постепенно будет включаться все больше и больше быстрых двигательных единиц, которые могут „стартовать" с более высоких частот и вовлекать в активное состояние больший диапазон частот. Для преодоления максимальных сопротивлений подготовленные в силовом отношении спортсмены включают около 85% своих двигательных единиц с оптимальными импульсными частотами. В связи с тем, что „медленные" единицы имеют меньше мышечных волокон и по этой причине развивают меньше силы, чем „быстрые" единицы, часто уже при усилии в 25% мобилизуется около 50% имеющихся в распоряжении единиц.

Участие относительно большого количества малых двигательных единиц в незначительной силовой работе позволяет проводить более тонкую регуляцию мышечной деятельности, чем при высоких силовых нагрузках. Процессы временной суммации (частота импульсов) согласно результатам последних исследований условно поддаются тренировке, пусть даже эта тренировка проводится в очень сложных общих взаимосвязях. Тренированная двигательная единица может быстрее укорачиваться (см. 2.2.1.3.), обрабатывать" более высокие импульсные частоты и развивать большую силу.

Когда скоростная сила, которая реализуется главным образом быстрыми FT-волокнами, противодействует умеренным и высоким сопротивлениям, происходит активизация большого количества двигательных единиц с короткой серией импульсов. Эта, так называемая, стартовая иннервация вызывает нарастающий и сильный процесс сокращения. За взрывным началом сокращения следует сигнальная блокировка (биоэлектрическое молчание), во время которой двигательные единицы сокращаются с высокой скоростью. Такие скоростно-силовые движения называются также баллистическими движениями. Они заранее программируются в головном мозге и осуществляются с такой высокой скоростью, что во время их выполнения обратная связь не срабатывает, в результате чего движение невозможно исправить в ходе его выполнения. Продолжительность биоэлектрического молчания, следующего за стартовой иннервацией, зависит главным образом от величины преодолеваемого сопротивления. Если сопротивление настолько велико, что ускорения при свободном сокращении больше не происходит, то следует новая серия импульсов, сопровождаемая биоэлектрическим молчанием, благодаря которой обеспечивается дальнейшее ускорение. Если же сопротивление настолько велико, что серия импульсов и последующая сигнальная блокировка не появляются, то сопротивление будет преодолеваться импульсами очень высокой частоты. Движения, которые характеризуются короткой серией (сериями) импульсов с последующей сигнальной блокировкой и баллистическим сокращением, имеют резко выраженный скоростно-силовой характер. Движения, характеризуемые рядом импульсов очень высокой частоты, имеют характер максимальной силы.

Когда скелетная мышца работает на силовую выносливость и преодолевает легкие или умеренные сопротивления, при которых частота импульсов не достигает максимума, деятельность двигательных единиц осуществляется попеременно (асинхронная деятельность).

Это означает, что в соответствии с требуемым усилием активизируется лишь определенная часть двигательных единиц и таким образом происходит движение. Другая часть двигательных единиц находится в неактивном состоянии и укорачивается пассивно. При возрастании утомляемости двигательные единицы, бывшие до сего времени активными, выключаются, а вместо них начинают активно работать другие, неактивные до сих пор, двигательные единицы.

В обычных условиях человек, выполняя статическую или динамическую работу преодолевающего характера (см. 2.3.), не может одновременно включать в движение все двигательные единицы мышцы. Высокотренированные атлеты тех видов спорта, в которых сила является основным компонентом результативности (тяжелая атлетика, борьба, легкоатлетические метания), для выполнения движения способны активно и одновременно подключать до 85% своих мышечных волокон и тем самым развивать большую силу. Нетренированные лица могут обычно активизировать лишь до 60%. Умение управлять двигательными единицами синхронно называется внутримышечной (интрамышечной) координацией. Ее уровень можно считать высоким, если спортсмен, с одной стороны, обладает ярко выраженной способностью дифференцировать силу и, с другой стороны, может одновременно активизировать высокий процент двигательных единиц. Под воздействием гипноза или при электрической стимуляции (100 гц и выше) нетренированный человек может одновременно задействовать значительно больше двигательных единиц и тем самым увеличить свою силу почти на 35%.

Тренированный человек при независящих от усилия воли условиях может увеличить свой силовой потенциал лишь на 10%. Разница между произвольно мобилизованной максимальной силой и непроизвольно активизированной силой называется дефицитом силы. В тренировочной практике дефицит силы определяется чаще всего разницей в силе, развиваемой в статическом и динамически-уступающем режимах (см. 2.3.). Такое определение возможно потому, что сила, развиваемая при принудительном растягивании мышц (динамическая работа уступающего характера) обычно на 10-35% превышает силу, которая может быть мобилизована при статическом режиме работы. Таким образом, в показателях силы, достигаемых, с одной стороны, электрической стимуляцией мышц в статическом режиме и, с другой стороны, принудительным растягиванием мышц в динамическом режиме, имеется полное соответствие. При уступающем режиме работы независимо от воли подключаются дополнительные двигательные единицы, т.е. в этих условиях величина силы практически не зависит от уровня внутримышечной координации. При этом необходимо иметь в виду, что вызванную силу и произвольную можно сопоставлять друг с другом лишь тогда, когда они прикладываются в сопоставимых условиях (например, при одном и том же угле в суставах).

Экспериментально удалось доказать, что величина развития силы при принудительном растягивании мышц увеличивается вместе с увеличением скорости, в то время как при преодолевающем режиме работы она при увеличении скорости снижается (см. 2.2.1.2. и рис. 9).

Рис. 9 Скоростно-силовая пропорция у одной из мышц-сгибателей предплечья при выполнении эксцентрической и концентрической работы (по Коми)

Итак, при увеличении скорости сокращения разница между возможной мобилизацией силы при преодолевающем и уступающем режимах работы продолжает расти.

Однако, нужно сказать, что это утверждение только затрагивает детей в возрасте до 14 лет. Разница в силе, которую развивают дети этого возраста при преодолевающем и уступающем режимах работы, очень незначительна.

Таким образом, чем больше у взрослых различий в показателях силы при работе в статическом и динамически-уступающем режимах, тем меньше их максимальная сила по сравнению с абсолютной, тем больше их дефицит силы и тем ниже Уровень их внутримышечной координации. В этом случае мышечную силу можно развить при помощи тренировки, направленной на одновременное включение в движение возможно большего количества двигательных единиц (метод кратковременных максимальных напряжений, см. 9.2.1.3.). Сила отдельного мышечного волокна или отдельной двигательной единицы вряд ли будет увеличена таким путем, т.е. мышечный поперечник (и вес тела спортсмена) или совсем не увеличится, или увеличится незначительно. Если разница в силе при статическом и динамически-уступающем режимах работы относительно невелика, то резервов для развития силы путем улучшения внутримышечной координации практически нет. Силу нужно развивать другим путем, например, увеличивая поперечное сечение мышцы. Дефицит силы представляет собой своеобразный показатель имеющегося потенциала развития максимальной силы без увеличения поперечника мышцы и тем самым - веса тела. Различная способность у нетренированных людей и высококвалифицированных спортсменов к мобилизации максимально большого количества двигательных единиц показывает, что подготовленный в силовом отношении человек обычно имеет не только большую мышечную массу, но и более обширную возможность ее использования - до 85%. Это также означает, что возможность развития силы совершенствованием внутримышечной координации у подготовленных высококвалифицированных спортсменов в сравнении с неподготовленными ограничена. По этой причине увеличение поперечника мышцы является самым основным методом для повышения базового потенциала силы.

2.2.2.3. Межмышечная координация

В спорте практически нельзя выполнять движения с использованием какой-либо одной мышцы. Для решения любой двигательной задачи привлекается относительно большое число. мышц или мышечных групп. Базовый потенциал силы, зависящий главным образом от поперечного сечения мышечного волокна, объема мышцы, строения волокон и внутримышечной координации, может быть превращен в оптимальный результат только в том случае, когда отдельные мышцы или мышечные группы будут задействованы в пространственно-временном и динамико-временном отношениях последовательно в соотвйствии с двигательной задачей. Это также означает, что нервная система настраивается на использование только тех мышц, работа которых необходима для решения определенной двигательной задачи. Это взаимодействие участвующих в движении мышц или мышечных групп называется межмышечной координацией. Она всегда связана с определенным видом движения и не может переноситься с одного движения на другое. Например, при выполнении жима лежа на скамейке участвуют одни мышечные группы, а при подтягивании на перекладине - другие. Взаимодействие мышц также организовано по-разному. Особое значение для межмышечной координации имеет согласованность в работе мышц, реализующих определенное движение (агонисты) и мышц, действующих в противоположную сторону при этом движении (антагонисты).

При скоростно-силовом жиме лежа на скамейке трицепс разгибает руку в локтевом суставе, а бицепс, плечевая мышца и плечелучевая мышца (антагонисты), основная функция которых состоит в сгибании руки в локтевом суставе, препятствуют разгибанию, особенно в конечной фазе движения (см. табл. 13 и рис. 60 а). Взаимодействие агонистов и антагонистов происходит следующим образом (упрощенно). При скоростно-силовом выпрямлении руки из положения лежа на спине, преодолевая относительно высокое сопротивление, одновременно серией коротких импульсов активизируется максимально возможное количество двигательных единиц трицепса и мышц, работающих вместе с ним (например, большая грудная мышца и др.). За серией импульсов и начинающимся сокращением следует сигнальная блокировка (биоэлектрическое молчание), во время которой мышечные волокна укорачиваются с высокой скоростью без какого-либо управления.

Сигнальная блокировка в двигательных единицах, реализующих движение (трицепс и др.), связана с сигнальной блокировкой двигательных единиц антагонистов, поэтому движение может выполняться беспрепятственно и без потери силы. В конце движения для его торможения начинают активизироваться антагонисты. Ариель (1976-1977) излагает этот метод работы нервно-мышечной системы следующим образом. При обычном подъеме штанги происходит начальный взрыв мышечной активности в связи с тем, что мышца-агонист сокращается, а мышца-антагонист расслабляется. Это приводит к ускорению движения конечности. Затем следует спокойный промежуточный период в это время в связи с сокращением антагониста происходит замедление движения конечности. В конце движения напряжение мышцы-антагониста должно его остановить (7).

Эта согласованность в работе агонистов и антагонистов во многом зависит от растянутости мышц. Преимущество растянутых мышц в том, что они в состоянии покоя слегка напряжены (около 15% своей длины равновесия) и из этого начального состояния способны развить особенно большую силу. С другой стороны, они позволяют производить движения с большой амплитудой, благодаря чему используется более длинный путь ускорения и имеющийся потенциал силы. Большая амплитуда позволяет выполнять движения мягче, эластичнее и плавнее, так как антагонисты начинают их притормаживать позднее (см. 2.7.).

Чем больше мышц или мышечных групп принимают участие в движении, т.е. чем сложнее движение, тем большую роль играет межмышечная координация для выполнения силового упражнения.

В тренировочной практике различных видов спорта сложные технические действия часто расчленяются на отдельные части (элементы). Цель такого расчленения состоит в том, чтобы силовой тренировкой развить мышечные группы, которые принимают непосредственное участие в выполнении соревновательного движения. Усиление этих мышечных групп осуществляется специальными упражнениями, структура которых совпадает лишь с частью структуры соревновательного упражнения. С помощью несложных специальных упражнений можно особенно сильно нагружать мышцы, участвующие в соревновательном движении, и таким образом эффективнее их развивать.

Такими специальными упражнениями, например, для толкателя ядра являются жим лежа на скамейке, наклоны туловища в стороны, поднимание и опускание туловища, приседания и вставание на носки. Новое, хорошо скоординированное при помощи специальных упражнений взаимодействие мышечных групп, укреплявшихся изолированно, требует специального обучения технике, присущей данному виду спорта. Трудности проявляются тогда, когда не все мышцы развиты достаточно хорошо, нарушена гармония в развитии. Если, например, толкатель ядра при помощи специальных упражнений улучшает лишь силу мышц-разгибателей рук и ног и выпустит из внимания мышцы туловища, то это может привести к серьезным нарушениям межмышечной координации. Финальное усилие при этом останется небольшим. Если межмышечная координация не удовлетворяет предъявляемым требованиям, например, когда при взрывном включении мышц начальная иннервация агониста не связана с оптимальным биоэлектрическим молчанием (компенсация потерь) антагониста, или когда его силы торможения включаются преждевременно, то теряется большая часть проявляемой силы. В отличие от этого высокий уровень межмышечной координации проявляется в оптимальной плавности движения, целесообразном ритме, точном выполнении и, в конечном итоге, в большой силовой отдаче.

За счет целенаправленной тренировки, которую часто называют также тренировкой на развитие техники с помощью силовых элементов, можно значительно поднять уровень межмышечной координации. Однако следует сказать еще раз, что взаимодействие мышц, как правило, улучшается лишь в натренированном движении. На движение с похожими пространственно-временными и динамико-временными структурами это улучшение переносится лишь частично, а на движения с неодинаковыми структурами не переносится совсем. Высокий базовый потенциал силы является основной предпосылкой, но никак не гарантией того, что движения будут выполняться с полной силой. Лишь тот спортсмен способен целесообразно использовать свой потенциал силы, который понял, что отработка межмышечной координации должна проводиться на соответствующих движениях. Тренированный спортсмен, в отличие 'от нетренированного, обладает не только большей мышечной массой и может ее гораздо полнее использовать (внутримышечная координация), он также в состоянии гораздо эффективнее реализовать этот потенциал силы в своем спортивном результате (межмышечная координация).




Поделитесь с Вашими друзьями:
1   2   3


База данных защищена авторским правом ©uverenniy.ru 2019
обратиться к администрации

    Главная страница